Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Drug Metab Rev ; 55(1-2): 126-139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36916327

RESUMEN

Gut microbiota is known as unique collection of microorganisms (including bacteria, archaea, eukaryotes and viruses) that exist in a complex environment of the gut. Recently, this has become one of the most popular areas of research in medicine because this plays not only an important role in disease development, but gut microbiota also influences drug pharmacokinetics. These alterations in drug pharmacokinetic pathways and drug concentration in plasma and blood often lead to an increase in the incidence of toxicological events in patients. This review aims to present current knowledge of the most commonly used drugs in clinical practice and their dynamic interplay with the host's gut microbiota as well as the mechanisms underlying these metabolic processes and the consequent effect on their therapeutic efficacy and safety. These new findings set a foundation for the development of personalized treatments specific to each metabolism, maximizing drugs' therapeutic effects and minimizing the side effects because they are one of the major limiting factors in treating patients.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Microbioma Gastrointestinal , Humanos
2.
Phys Chem Chem Phys ; 25(46): 31726-31740, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37964641

RESUMEN

In the current era, alternative but environment-friendly sources of energy have gained attention to meet the growing energy demands. In particular, the focus of research has been solar energy and using it to fulfill energy demands. Solar energy is either directly converted into electrical energy or stored for later use. Solar cells are a practical way to turn solar energy into electrical energy. Various materials are being investigated to manufacture solar cell devices that can absorb a maximum number of photons present in sunlight. The present study reports thermally evaporated in situ Cu-doped SnS photon absorber thin films with tunable physical properties. This study mainly explored the effects of changing Cu concentrations on the physical features of light absorption of SnS thin films. The thin films were formed by simultaneous resistive heating of Cu and SnS powders on glass substrates at 150 °C. The X-ray diffraction patterns revealed pure SnS thin films having orthorhombic polycrystalline crystal structures oriented preferentially along the (111) plane. Raman spectroscopy confirmed this phase purity. Photoconductivity studies showed phase dependence on Cu content that improved with increasing concentrations of Cu. The optical bandgap energy was also found to be dependent on Cu content and was observed at 1.10-1.47 eV for SnS thin films with variation in the Cu content, i.e., 0-18%. According to the hot probe method, all films displayed p-type conductivity for the substitution of Cu metal atoms. These findings demonstrated that the prepared thin films are substantial candidates as low-cost, suitably efficient, thin-film solar cells featuring environmentally-friendly active layers that absorb sunlight.

3.
Environ Res ; 216(Pt 1): 114479, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208784

RESUMEN

A feasible and cost-effective process for utilization of toluene and heavy reformate is the conversion of its streams by transalkylation reaction into highly valuable xylenes. The process is usually catalysed by zeolites and the challenges to overcome in transalkylation of heavy reformate with toluene over zeolites are their selectivity, activity, long-term stability, and coke formation. Current study aimed to investigate xylenes production by transalkylation reaction on the synthesized metal-doped zeolite catalysts and to characterize prepared catalysts by FTIR, SEM, EDS and BET analysis. Toluene/heavy reformate modelled mixture was utilized as a feed. For the first time Beta and ZSM-5 catalysts with 10% (w/w) cerium and 0.1% (w/w) palladium were synthesized by calcination and wet impregnation method. Catalytic tests were performed by continuous-flow gas/solid catalytic fixed bed reactor at atmospheric pressure, 2 h-1 and 5 h-1 and 250, 300, 350 and 400 °C. Experimental results revealed that the highest heavy reformate conversion (98.94%) and toluene conversion (9.82%) were obtained over H-ZSM-5, at 400 °C and 2 h-1 WHSV. The highest xylene selectivity (11.53) was achieved over H-ZSM-5, and the highest p-xylene percentage (62.40%), using Ce-ZSM-5 catalyst. ZSM-5 catalysts showed more resistance to coke deposition than Beta zeolites. The present study delivers novel approach and catalysts, which have immense potential for developing safer and inexpensive transalkylation process in industry.


Asunto(s)
Coque , Zeolitas , Xilenos , Tolueno , Catálisis , Metales
4.
Environ Res ; 220: 115160, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36580987

RESUMEN

Humic acid (HA) is a complex organic compound made up of small molecules. A variety of raw materials are used to manufacture HA, due to which the structure and composition of HA vary widely. In this study, nitric acid oxidation of two coal samples from Lakhra (Pakistan) was followed by HA extraction using 2.5, 3.0 and 3.5% KOH solutions. The impact of different operating parameters such as; the effect of KOH concentrations, KOH-coal proportion, extraction time and pH range influencing the HA extraction efficiency was optimally investigated. Commercial HA applications possess numerous challenges, including valuable applications and sub-optimal extraction techniques. A significant limitation of conventional experimental methods is that they can only investigate one component at a time. It is necessary to improve the current processing conditions, this can only be achieved by modelling and optimization of the process conditions to meet market demands. A comprehensive evaluation and prediction of HA extraction using Response Surface Methodology (RSM) are also being reported for the first time in this study. The maximum HA extraction efficiency of 89.32% and 87.04% for coal samples 1 and 2 respectively was achieved with the lowest possible pH of 1.09 (coal sample 1) and 1(coal sample 2), which is remarkably lower as compared to those reported in the literature for conventional alkaline extraction process. The model was evaluated for two coal samples through the coefficient of determination (R2), Root Means Square Error (RMSE), and Mean Average Error (MEE). The results of RSM for coal sample 1 (R2 = 0.9795, RMSE = 4.784) and coal sample 2 (R2 = 0.9758, RMSE = 4.907) showed that the model is well suited for HA extraction efficiency predictions. The derived humic acid from lignite coal was analyzed using elemental analysis, UV-Visible spectrophotometry and Fourier-transformed infrared (FTIR) spectroscopy techniques. Scanning Electron Microscopy (SEM) was applied to analyze the morphological modifications of the extracted HA after treatment with 3.5% KOH solution. For agricultural objectives, such as soil enrichment, enhancing plant growth conditions, and creating green energy solutions, this acquired HA can be made bioactive. This study not only establishes a basis for research into the optimized extraction of HA from lignite coal, but it also creates a new avenue for the efficient and clean use of lignite.


Asunto(s)
Carbón Mineral , Sustancias Húmicas , Sustancias Húmicas/análisis , Suelo , Compuestos Orgánicos , Espectroscopía Infrarroja por Transformada de Fourier
5.
Environ Res ; 231(Pt 2): 116210, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37217132

RESUMEN

Soil erosion is a serious and complex environmental problem worldwide, especially in the centre west of Tunisia. Whereas the construction of hill reservoirs is part of the soil and water conservation strategy, many of these have a siltation problem. Dhkekira is one of the smallest watersheds in central Tunisia whose most lithological formation consists of materials that are quite susceptible to water erosion. Due to the lack of low-scale lithological data, digital IR aerial photos with 2 m spatial resolution were considered. A semi-automatic classification of aerial photos, based on the image's textural indices is developed. The lithologic map extracted from aerial photos was used as input for ANSWERS-2000 water erosion model. Results obtained indicate first, with the semi-automatic classification of the mean and standard deviation of the thumbnail histograms that image output could help to give an idea about the existence of some surface lithological formation. The model applied to Dhkekira watershed showed that the spatial difference in water erosion was not caused only by land cover and slope, but also by lithological formation. The percentage of each lithological formation in sediment yield at the Dhkekira hill reservoir was estimated to be 69% sediment yield from Pleistocene and 19.7% from Lutetian-Priabonian.


Asunto(s)
Restauración y Remediación Ambiental , Erosión del Suelo , Conservación de los Recursos Naturales/métodos , Agua , Monitoreo del Ambiente/métodos , Suelo
6.
Environ Monit Assess ; 195(10): 1142, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665398

RESUMEN

Graphitic carbon nitride (g-CN) has a number of valuable features that have been recognized during the studies related to its photocatalytic activity enhancement derived by visible light. Because of these characteristics, g-CN can be used as a detecting signal transducer with different transmission modalities. The latest up-to-date detection capabilities of modified g-CN nanoarchitectures are covered in this study. The structural features and synthetic methodologies have been discussed in a number of reports. Herein, employment of the g-CN as a promising probing modality for the recognition of different toxic heavy metals is the promising feature of the present study.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Monitoreo del Ambiente , Agua
7.
Arch Microbiol ; 204(2): 144, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044532

RESUMEN

Microorganisms are ubiquitous on Earth and can inhabit almost every environment. In a complex heterogeneous environment or in face of ecological disturbance, the microbes adjust to fluctuating environmental conditions through a cascade of cellular and molecular systems. Their habitats differ from cold microcosms of Antarctica to the geothermal volcanic areas, terrestrial to marine, highly alkaline zones to the extremely acidic areas and freshwater to brackish water sources. The diverse ecological microbial niches are attributed to the versatile, adaptable nature under fluctuating temperature, nutrient availability and pH of the microorganisms. These organisms have developed a series of mechanisms to face the environmental changes and thereby keep their role in mediate important ecosystem functions. The underlying mechanisms of adaptable microbial nature are thoroughly investigated at the cellular, genetic and molecular levels. The adaptation is mediated by a spectrum of processes like natural selection, genetic recombination, horizontal gene transfer, DNA damage repair and pleiotropy-like events. This review paper provides the fundamentals insight into the microbial adaptability besides highlighting the molecular network of microbial adaptation under different environmental conditions.


Asunto(s)
Adaptación Fisiológica , Ecosistema , Aclimatación , Adaptación Fisiológica/genética , Frío , Transferencia de Gen Horizontal
8.
Environ Res ; 204(Pt D): 112387, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34785206

RESUMEN

Wastewater treatment and electricity generation have been the major concerns for the last few years. The scarcity of fossil fuels has led to the development of unconventional energy resources that are pollution-free. Microbial fuel cell (MFC) is an environmental and eco-friendly technology that harvests energy through the oxidation of organic substrates and transform into the electric current with the aid of microorganisms as catalysts. This review presents power output and colour removal values by designing various configurations of MFCs and highlights the importance of materials for the fabrication of anode and cathode electrodes playing vital roles in the formation of biofilm and redox reactions taking place in both chambers. The electron transfer mechanism from microbes towards the electrode surface and the generation of electric current are also highlighted. The effect of various parameters affecting the cell performance such as type and amount of substrate, pH and temperature maintained within the chambers have also been discussed. Although this technology presents many advantages, it still needs to be used in combination with other processes to enhance power output.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Electricidad , Electrodos , Tecnología , Aguas Residuales
9.
Environ Res ; 214(Pt 1): 113793, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35780854

RESUMEN

Biogas up-gradation is a useful method to control CO2 emission and enhance the green process. The demand for renewable sources is increasing due to the depletion of fossil fuels. Thin-film nanocomposites functionalized with tunable molecular-sieving nanomaterials have been employed to tailor membranes with enhanced permeability and selectivity. In this work, the cellulose nanocrystals as a filler in the polyvinyl alcohol matrix are prepared to achieve high-performance facilitated transport membranes for CO2 capture. Considering the mechanical stability, interfacial compatibility and high moisture uptake of the filler, the main objective of this work was to develop a novel aminated CNC (Am-CNC)/polyvinyl alcohol nanocomposite membrane for biogas upgrading. The hydroxyl groups (O-H) on the reducing end of the cellulose nanocrystals were replaced by amino groups (N-H2). It was discovered through Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) that adding Am-CNCs in PVA membranes shows an increment in the CO2 removal and effectively upgrades the biogas. The effect of change in concentration of Am-CNC and feed pressure was investigated. The results showed that with increasing Am-CNC concentration up to 1.5 wt%, the thickness of the selective membrane layer increased from 0.95 to 1.9 µm with a decrease in the moisture uptake from 85.04 to 58.84%. However, the best CO2 permeance and selectivity were achieved at 0.306 m3/m2.bar.h (STP) and 33.55, respectively. Furthermore, there was a more than two-fold decrease in CO2 permeance and a 27% decrease in the CO2/CH4 selectivity when the feed pressure increased from 5 to 15 bar. It was revealed that PVA/Am-CNC membrane is high performing for the biogas upgradation.


Asunto(s)
Nanocompuestos , Nanopartículas , Biocombustibles , Dióxido de Carbono , Celulosa , Alcohol Polivinílico
10.
Environ Res ; 215(Pt 1): 114294, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36113573

RESUMEN

The rapidly expanding global energy demand is forcing a release of regulated pollutants into water that is threatening human health. Among various wastewater remediating processes, electrocoagulation (EC) has scored a monumental success over conventional processes because it combines coagulation, sedimentation, floatation and electrochemical oxidation processes that can effectively decimate numerous stubborn pollutants. The EC processes have gained some attention through various academic and industrial publications, however critical evaluation of EC processes, choices of EC processes for various pollutants, process parameters, mechanisms, commercial EC technologies and performance enhancement via other degradation processes (DPs) integration have not been comprehensively covered to date. Therefore, the major objective of this paper is to provide a comprehensive review of 20 years of literature covering EC fundamentals, key process factors for a reactor design, process implementation, current challenges and performance enhancement by coupling EC with pivotal pollutant DPs including, electro/photo-Fenton (E/P-F), photocatalysis, sono-chemical treatment, ozonation, indirect electrochemical/advanced oxidation (AO), and biosorption that have substantially reduced metals, pathogens, toxic compound BOD, COD, colors in wastewater. The results suggest that the optimum treatment time, current density, pulse frequency, shaking speed and spaced electrode improve the pollutants removal efficiency. An elegant process design can prevent electrode passivation which is a critical limitation of EC technology. EC coupling (up or downstream) with other DPs has resulted in the removal of organic pollutants and heavy metals with a 20% improved efficiency by EC-EF, removal of 85.5% suspended solid, 76.2% turbidity, 88.9% BOD, 79.7% COD and 93% color by EC-electroflotation, 100% decolorization by EC-electrochemical-AO, reduction of 78% COD, 81% BOD, 97% color by EC-ozonation and removal of 94% ammonia, 94% BOD, 95% turbidity, >98% phosphorus by aerated EC and peroxicoagulation. The major wastewater purification achievements, future potential and challenges are described to model the future EC integrated systems.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Amoníaco , Electrocoagulación/métodos , Humanos , Fósforo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Agua , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
11.
Biotechnol Appl Biochem ; 69(5): 2176-2194, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34699092

RESUMEN

Esterase enzymes are a family of hydrolases that catalyze the breakdown and formation of ester bonds. Esterases have gained a prominent position in today's world's industrial enzymes market. Due to their unique biocatalytic attributes, esterases contribute to environmentally sustainable design approaches, including biomass degradation, food and feed industry, dairy, clothing, agrochemical (herbicides, insecticides), bioremediation, biosensor development, anticancer, antitumor, gene therapy, and diagnostic purposes. Esterases can be isolated by a diverse range of mammalian tissues, animals, and microorganisms. The isolation of extremophilic esterases increases the interest of researchers in the extraction and utilization of these enzymes at the industrial level. Genomic, metagenomic, and immobilization techniques have opened innovative ways to extract esterases and utilize them for a longer time to take advantage of their beneficial activities. The current study discusses the types of esterases, metagenomic studies for exploring new esterases, and their biomedical applications in different industrial sectors.


Asunto(s)
Esterasas , Metagenómica , Animales , Esterasas/metabolismo , Metagenómica/métodos , Metagenoma , Biotecnología , Biocatálisis , Mamíferos/genética , Mamíferos/metabolismo
12.
Mar Drugs ; 20(3)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35323507

RESUMEN

This review highlights the underexplored potential and promises of marine bioactive peptides (MBPs) with unique structural, physicochemical, and biological activities to fight against the current and future human pathologies. A particular focus is given to the marine environment as a significant source to obtain or extract high-value MBPs from touched/untouched sources. For instance, marine microorganisms, including microalgae, bacteria, fungi, and marine polysaccharides, are considered prolific sources of amino acids at large, and peptides/polypeptides in particular, with fundamental structural sequence and functional entities of a carboxyl group, amine, hydrogen, and a variety of R groups. Thus, MBPs with tunable features, both structural and functional entities, along with bioactive traits of clinical and therapeutic value, are of ultimate interest to reinforce biomedical settings in the 21st century. On the other front, as the largest biome globally, the marine biome is the so-called "epitome of untouched or underexploited natural resources" and a considerable source with significant potentialities. Therefore, considering their biological and biomedical importance, researchers around the globe are redirecting and/or regaining their interests in valorizing the marine biome-based MBPs. This review focuses on the widespread bioactivities of MBPs, FDA-approved MBPs in the market, sustainable development goals (SDGs), and legislation to valorize marine biome to underlying the impact role of bioactive elements with the related pathways. Finally, a detailed overview of current challenges, conclusions, and future perspectives is also given to satisfy the stimulating demands of the pharmaceutical sector of the modern world.


Asunto(s)
Organismos Acuáticos , Productos Biológicos , Péptidos , Animales , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Aprobación de Drogas , Ecosistema , Humanos , Péptidos/farmacología , Péptidos/uso terapéutico , Desarrollo Sostenible , Estados Unidos , United States Food and Drug Administration
13.
Environ Res ; 195: 110839, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33549623

RESUMEN

The outbreak of COVID-19 pandemic has emerged as a major challenge from human health perspective. The alarming exponential increase in the transmission and fatality rates related to this disease has brought the world to a halt so as to cope up with its stern consequences. This has led to the imposition of lockdown across the globe to prevent the further spread of this disease. This lock down brought about drastic impacts at social and economic fronts. However, it also posed some positive impacts on environment as well particularly in the context of air quality due to reduction in concentrations of particulate matter (PM), NO2 and CO across the major cities of the globe as indicated by several research organizations. In China, Italy, France and Spain, there were about 20-30% reduction in NO2 emission while in USA 30% reduction in NO2 emission were observed. Compared to previous year, there was 11.4% improvement in the air quality in China. Drastic reductions in NO (-77.3%), NO2 (-54.3%) and CO (-64.8%) (negative sign indicating a decline) concentrations were observed in Brazil during partial lockdown compared to the five year monthly mean. In India there were about -51.84, -53.11, -17.97, -52.68, -30.35, 0.78 and -12.33% reduction in the concentration of PM10, PM2.5, SO2, NO2, CO, O3 and NH3 respectively. This article highlights the impact of lockdown on the environment and also discusses the pre and post lockdown air pollution scenario across major cities of the world. Several aspect of environment such as air, water, noise pollution and waste management during, pre and post lockdown scenario were studied and evaluated comprehensively. This research would therefore serve as a guide to environmentalist, administrators and frontline warriors for fighting our the way to beat this deadly disease and minimize its long term implications on health and environment.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Brasil , China , Ciudades , Cambio Climático , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Francia , Humanos , India , Italia , Pandemias , Material Particulado/análisis , SARS-CoV-2 , España
14.
J Environ Manage ; 278(Pt 2): 111302, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33152547

RESUMEN

The water reservoirs are getting polluted due to increasing amounts of micropollutants such as pharmaceuticals, organic polymers and suspended solids. Powdered activated carbon (PAC) has been proved to be a promising solution for the purification of water without having harmful impacts on the environment. Parameters such as PAC dosing, wastewater hardness, the effect of coagulant and flocculant were evaluated in a batch scale study. These parameters were further applied on a pilot plant scale for the performance evaluation of PAC based removal of micropollutants concerning the contact time and PAC dosing with main focus on recirculation of PAC sludge. The obtained optimum dose was 10-20 mg/L providing 84.40-91.30% removal efficiency of suspended solid micropollutants (MPs) and this efficiency increased to 88.90-93.00% along with coagulant which further raised by the addition of polymer and recirculation process at batch scale. On pilot plant scale, the concentration in contact reactor and PAC removal effectiveness of dissolved air flotation, lamella separator and sedimentation tank were compared. Constant optimisation resulted in a concentration ranging from 2.70 to 3.40 g/L at dosing of PAC 10 mg/L, coagulant 2.00 mg/L and polymer 0.50 mg/L. PAC doses of 10-20 mg/L with 15-30 min contact time proved best for above 70-80% elimination. The recirculation system has also proved an efficient technique because the PAC's adsorption capacity was practically completely used. Small PAC dosages yielded high micropollutants elimination.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
15.
J Environ Manage ; 287: 112257, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33690013

RESUMEN

The economic developments around the globe resulted in the increased demand of energy, which overburdened the supply chain sources of energy. Fossil fuel reserves are exploited to meet the high demand of energy and their combustion is becoming the main source of environmental pollution. So there is dire need to find safe, renewable and sustainable energy resources. Waste to energy (WtE) may be viewed as a possible alternate source of energy, which is economically and environmentally sustainable. Municipal solid waste (MSW) is a major contributor to the development of renewable energy and sustainable environment. At present the scarcity of renewable energy resources and disposal of MSW is a challenging problem for the developing countries, which has generated a wide ranging socioeconomic and environmental problems. This situation stimulates the researchers to develop alternatives for converting WtE under a variety of scenarios. Herein, the present scenario in developing the WtE technologies such as, thermal conversion methods (Incineration, Gasification, Pyrolysis, Torrefaction), Plasma technology, Biochemical methods, Chemical and Mechanical methods, Bio-electrochemical process, Mechanical biological treatment (MBT), Photo-biological processes for efficacious energy recovery and the challenges confronted by developing and developed countries. In this review, a framework for the evaluation of WtE technologies has been presented for the ease of researchers working in the field. Furthermore, this review concluded that WtE is a potential renewable energy source that will partially satisfy the demand for energy and ensure an efficient MSW management to overcome the environmental pollution.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Biomasa , Incineración , Residuos Sólidos , Tecnología
16.
Saudi Pharm J ; 27(8): 1164-1173, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31885476

RESUMEN

This study reports the formation of 5-FU co-crystals with four different pharmacologically safe co-formers; Urea, Thiourea, Acetanilide and Aspirin using methanol as a solvent. Two fabrication schemes were followed i.e., solid-state grinding protocol, in which API and co-formers were mixed through vigorous grinding while in the other method separate solutions of both the components were made and mixed together. The adopted approaches offer easy fabrication protocols, no temperature maintenance requirements, no need of expensive solvents, hardly available apparatus, isolation and purification of the desired products. In addition, there is no byproducts formation, In fact, a phenomenon embracing the requirements of green synthesis. Through FTIR analysis; for API the N-H absorption frequency was recorded at 3409.02 cm-1 and that of -C[bond, double bond]O was observed at 1647.77 cm-1. These characteristics peaks of 5-FU were significantly shifted and recorded at 3499.40 cm-1 and 1649.62 cm-1 for 5-FU-Ac (3B) and 3496.39 cm-1 and 1659.30 cm-1 for 5-FU-As (4B) co-crystals for N-H and -C[bond, double bond]O groups respectively. The structural differences between API and co-crystals were further confirmed through PXRD analysis. The characteristic peak of 5-FU at 2θ = 28.79918o was significantly shifted in the graphs of co-crystals not only in position but also with respect to intensity and FWHM values. In addition, new peaks were also recorded in all the spectra of co-formers confirming the structural differences between API and co-formers. In addition, percent growth inhibition was also observed by all the co-crystals through MTT assay against HCT 116 colorectal cell lines in vitro. At four different concentrations; 25, 50, 100 and 200 µg/mL, slightly different trends of the effectiveness of API and co-crystals were observed. However; among all the co-crystal forms, 5-FU-thiourea co-crystals obtained through solution method (2B) proved to be the most effective growth inhibitor at all the four above mentioned concentrations.

17.
Saudi Pharm J ; 26(4): 453-461, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29844715

RESUMEN

Adverse Drug Reactions (ADRs) underreporting is a great challenge to pharmacovigilance. Healthcare professionals should consider ADR reporting as their professional obligation because the effective system of ADR reporting is important to improve patient care and safety. This study was designed to assess the knowledge, attitude, practice and factors associated with ADR reporting by healthcare professionals (physicians and pharmacists) in secondary and tertiary hospitals of Islamabad. A pretested questionnaire comprising of 27 questions (knowledge 12, attitude 4, practice 9 and factors influencing ADR reporting 2) was administered to 384 physicians and pharmacists in public and private hospitals. Respondents were evaluated for their knowledge, attitude and practice related to ADR reporting. Additionally, the factors which encourage and discourage respondents to report ADRs were also determined. The data was analysed by using SPSS statistical software. Among 384 respondents, 367 provided responses to questionnaire, giving a response rate of 95.5%. The mean age was 28.3 (SD = 6.7). Most of the respondents indicated poor ADR reporting knowledge (83.1%). The majority of respondents (78.2%) presented a positive attitude towards ADR reporting and only a few (12.3%) hospitals have good ADR reporting practice. The seriousness of ADR, unusualness of reaction, new drug involvement and confidence in the diagnosis of ADR are the factors which encourage respondents to report ADR whereas lack of knowledge regarding where and how to report ADR, lack of access to ADR reporting form, managing patient is more important than reporting ADR legal liability issues were the major factors which discourage respondents to report ADR. The study reveals poor knowledge and practice regarding ADR reporting. However, most of the respondents have shown a positive attitude towards ADR reporting. There is a serious need for educational training as well as sincere and sustained efforts should be made by Government and Hospital Authorities to ensure proper implementation of ADR reporting system in all of the hospitals.

18.
Int J Biol Macromol ; 270(Pt 1): 132346, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750859

RESUMEN

The impact of dual sequential modifications using radio-frequency (RF) plasma and electron beam irradiation (EBI) on starch properties was investigated and compared with single treatments within an irradiation dose range of 5-20 kGy. Regardless of sequence, dual treatments synergistically affected starch properties, increasing acidity, solubility, and paste clarity, while decreasing rheological features with increasing irradiation dose. The molecular weight distribution was also synergistically influenced. Amylopectin distribution broadened particularly below 10 kGy. Amylose narrowed its distribution across all irradiation doses. This was due to dominating EBI-induced degradation and molecular rearrangements from RF plasma. With the highest average radiation-chemical yield (G) and degradation rate constant (k) of (2.12 ± 0.14) × 10-6 mol·J-1 and (3.43 ± 0.23) × 10-4 kGy-1, respectively, upon RF plasma pre-treatment, amylose underwent random chain scission. In comparison to single treatments, dual modification caused minor alterations in spectral characteristics and crystal short-range order structure, along with increased granule aggregation and surface irregularities. The synergistic effect was dose-dependent, significant up to 10 kGy, irrespective of treatment sequence. The highest synergistic ratio was observed when RF plasma preceded irradiation, demonstrating the superior efficiency of plasma pre-treatment in combination with EBI. This synergy has the potential to lower costs and extend starch's technological uses by enhancing radiation sensitivity and reducing the irradiation dose.


Asunto(s)
Electrones , Peso Molecular , Gases em Plasma , Almidón , Almidón/química , Gases em Plasma/farmacología , Gases em Plasma/química , Solubilidad , Amilosa/química , Amilopectina/química , Reología
19.
Chem Biol Interact ; 388: 110838, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104745

RESUMEN

Drug-induced nephrotoxicity is still a significant obstacle in pharmacotherapy of various diseases and it accounts for around 25 % of serious side-effects reported after drug administration. Furthermore, some groups of drugs such as nonsteroidal anti-inflammatory drugs, antibiotics, antiviral drugs, antifungal drugs, immunosuppressants, and chemotherapeutic drugs have the "preference" for damaging the kidney and are often referred to as the kidney's "silent killer". Clinically, the onset of acute kidney injury associated with drug administration is registered in approximately 20 % of patients and many of them develop chronic kidney disease vulnerability. However, current knowledge about the mechanisms underlying this dangerous phenomenon is still insufficient with many unknowns. Hence, the valuable use of these drugs in clinical practice is significantly limited. The main aim of this study is to draw attention to commonly prescribed nephrotoxic drugs by clinicians or drugs bought over the counter. In addition, the complex relationship between immunological, vascular and inflammatory events that promote kidney damage is discussed. The practical use of this knowledge could be implemented in the engineering of novel biomarkers for early detection of drug-associated kidney damage such as Kidney Injury Molecule (KIM-1), lipocalin associated with neutrophil gelatinase (NGAL) and various microRNAs. In addition, the utilization of artificial intelligence (AI) for the development of computer algorithms that could detect kidney damage at an early stage should be further explored. Therefore, this comprehensive review provides a new outlook on drug nephrotoxicity that opens the door for further clinical research of novel potential drugs or natural products for the prevention of drug-induced nephrotoxicity and accessible education.


Asunto(s)
Lesión Renal Aguda , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Lipocalina 2 , Inteligencia Artificial , Riñón , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Biomarcadores
20.
Pharmacol Ther ; 261: 108688, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972453

RESUMEN

Antibiotic-resistant bacteria are currently an important public health concern posing a serious threat due to their resistance to the current arsenal of antibiotics. Uropathogens Escherichia coli (UPEC), Proteus mirabilis, Klebsiella pneumoniae and Enterococcus faecalis, antibiotic-resistant gram-negative bacteria, cause serious cases of prolonged UTIs, increasing healthcare costs and potentially even leading to the death of an affected patient. This review discusses current knowledge about the increasing resistance to currently recommended antibiotics for UTI therapy, as well as novel therapeutic options. Traditional antibiotics are still a part of the therapy guidelines for UTIs, although they are often not effective and have serious side effects. Hence, novel drugs are being developed, such as combinations of ß-lactam antibiotics with cephalosporins and carbapenems. Siderophoric cephalosporins, such as cefiderocol, have shown potential in the treatment of individuals with significant gram-negative bacterial infections, as well as aminoglycosides, fluoroquinolones and tetracyclines that are also undergoing clinical trials. The use of cranberry and probiotics is another potential curative and preventive method that has shown antimicrobial and anti-inflammatory effects. However, further studies are needed to assess the efficacy and safety of probiotics containing cranberry extract for UTI prevention and treatment. An emerging novel approach for UTI treatment is the use of immuno-prophylactic vaccines, as well as different nanotechnology solutions such as nanoparticles (NP). NP have the potential to be used as delivery systems for drugs to specific targets. Furthermore, nanotechnology could enable the development of nano antibiotics with improved features by the application of different NPs in their structure, such as gold and copper NPs. However, further high-quality research is required for the synthesis and testing of these novel molecules, such as safety evaluation and pharmacovigilance.


Asunto(s)
Antibacterianos , Infecciones Urinarias , Humanos , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Infecciones Urinarias/prevención & control , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/efectos adversos , Animales , Farmacorresistencia Bacteriana , Probióticos/uso terapéutico , Vaccinium macrocarpon/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA