Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866538

RESUMEN

In 1998, Jones suggested a classification of thalamocortical projections into core and matrix divisions (Jones, 1998). In this classification, core projections are specific, topographical, innervate middle cortical layers, and serve to transmit specific information to the cortex for further analysis; matrix projections, in contrast, are diffuse, much less topographic, innervate upper layers, especially Layer 1, and serve a more global, modulatory function, such as affecting levels of arousal. This classification has proven especially influential in studies of thalamocortical relationships. Whereas it may be the case that a clear subset of thalamocortical connections fit the core motif, since they are specific, topographic, and innervate middle layers, we argue that there is no clear evidence for any single class that encompasses the remainder of thalamocortical connections as is claimed for matrix. Instead, there is great morphological variation in connections made by thalamocortical projections fitting neither a core nor matrix classification. We thus conclude that the core/matrix classification should be abandoned, because its application is not helpful in providing insights into thalamocortical interactions and can even be misleading. As one example of the latter, recent suggestions indicate that core projections are equivalent to first-order thalamic relays (i.e., those that relay subcortical information to the cortex) and matrix to higher-order relays (i.e., those that relay information from one cortical area to another), but available evidence does not support this relationship. All of this points to a need to replace the core/matrix grouping with a more complete classification of thalamocortical projections.


Asunto(s)
Corteza Cerebral , Vías Nerviosas , Tálamo , Tálamo/fisiología , Tálamo/anatomía & histología , Corteza Cerebral/fisiología , Corteza Cerebral/anatomía & histología , Humanos , Animales , Vías Nerviosas/fisiología , Vías Nerviosas/anatomía & histología
2.
Proc Natl Acad Sci U S A ; 119(21): e2201481119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35588455

RESUMEN

Higher-order thalamic nuclei contribute to sensory processing via projections to primary and higher cerebral cortical areas, but it is unknown which of their cortical and subcortical inputs contribute to their distinct output pathways. We used subpopulation specific viral strategies in mice to anatomically and physiologically dissect pathways of the higher-order thalamic nuclei of the somatosensory and visual systems (the posterior medial nucleus and pulvinar). Employing a complementary optogenetics and electrical stimulation strategy, we show that synapses in cortex from higher-order thalamus have functionally divergent properties in primary vs. higher cortical areas. Higher-order thalamic projections onto excitatory targets in S1 and V1 were weakly modulatory, while projections to S2 and higher visual areas were strong drivers of postsynaptic targets. Then, using transsynaptic tracing verified by optogenetics to map inputs to higher-order thalamus, we show that posterior medial nucleus cells projecting to S1 are driven by neurons in layer 5 of S1, S2, and M1 and that pulvinar cells projecting to V1 are driven by neurons in layer 5 of V1 and higher visual areas. Therefore, in both systems, layer 5 of primary and higher cortical areas drives transthalamic feedback modulation of primary sensory cortex through higher-order thalamus. These results highlight conserved organization that may be shared by other thalamocortical circuitry. They also support the hypothesis that direct corticocortical projections in the brain are paralleled by transthalamic pathways, even in the feedback direction, with feedforward transthalamic pathways acting as drivers, while feedback through thalamus is modulatory.


Asunto(s)
Corteza Somatosensorial , Núcleos Talámicos , Animales , Ratones , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Corteza Somatosensorial/anatomía & histología , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Núcleos Talámicos/anatomía & histología , Núcleos Talámicos/fisiología
3.
Proc Natl Acad Sci U S A ; 119(38): e2205209119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095204

RESUMEN

Neurons in the thalamic reticular nucleus (TRN) are a primary source of inhibition to the dorsal thalamus and, as they are innervated in part by the cortex, are a means of corticothalamic regulation. Previously, cortical inputs to the TRN were thought to originate solely from layer 6 (L6), but we recently reported the presence of putative synaptic terminals from layer 5 (L5) neurons in multiple cortical areas in the TRN [J. A. Prasad, B. J. Carroll, S. M. Sherman, J. Neurosci. 40, 5785-5796 (2020)]. Here, we demonstrate with electron microscopy that L5 terminals from multiple cortical regions make bona fide synapses in the TRN. We further use light microscopy to localize these synapses relative to recently described TRN subdivisions and show that L5 terminals target the edges of the somatosensory TRN, where neurons reciprocally connect to higher-order thalamus, and that L5 terminals are scarce in the core of the TRN, where neurons reciprocally connect to first-order thalamus. In contrast, L6 terminals densely innervate both edge and core subregions and are smaller than those from L5. These data suggest that a sparse but potent input from L5 neurons of multiple cortical regions to the TRN may yield transreticular inhibition targeted to higher-order thalamus.


Asunto(s)
Corteza Cerebral , Núcleos Talámicos Ventrales , Animales , Corteza Cerebral/fisiología , Corteza Cerebral/ultraestructura , Ratones , Microscopía Electrónica , Inhibición Neural , Neuronas/fisiología , Neuronas/ultraestructura , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Núcleos Talámicos Ventrales/fisiología , Núcleos Talámicos Ventrales/ultraestructura
4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34282018

RESUMEN

Higher order thalamic neurons receive driving inputs from cortical layer 5 and project back to the cortex, reflecting a transthalamic route for corticocortical communication. To determine whether or not individual neurons integrate signals from different cortical populations, we combined electron microscopy "connectomics" in mice with genetic labeling to disambiguate layer 5 synapses from somatosensory and motor cortices to the higher order thalamic posterior medial nucleus. A significant convergence of these inputs was found on 19 of 33 reconstructed thalamic cells, and as a population, the layer 5 synapses were larger and located more proximally on dendrites than were unlabeled synapses. Thus, many or most of these thalamic neurons do not simply relay afferent information but instead integrate signals as disparate in this case as those emanating from sensory and motor cortices. These findings add further depth and complexity to the role of the higher order thalamus in overall cortical functioning.


Asunto(s)
Corteza Cerebral/citología , Red Nerviosa/fisiología , Neuronas/fisiología , Tálamo/citología , Animales , Ascorbato Peroxidasas/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Vías Nerviosas/fisiología , Pisum sativum , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Plasmáticas de Unión al Retinol/genética , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Transducción de Señal , Sinapsis/fisiología
5.
J Neurosci ; 40(30): 5785-5796, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32532890

RESUMEN

The cerebral cortex, with all its computational power, can only influence behavior via corticofugal connections originating from layer 5 (L5) cells (Sherman and Guillery, 2013). To begin to establish the global pattern of these outputs, we examined L5 efferents originating from four cortical areas: somatosensory, visual, motor, and prefrontal (i.e., ventromedial orbitofrontal) cortex. We injected Cre-dependent adeno-associated virus in an Rbp4-Cre transgenic mouse line (both sexes) to label these L5 efferents selectively. Our study reveals that, across this diverse series of cortical regions, L5 commonly projects to multiple thalamic and extrathalamic sites. We also identified several novel corticofugal targets (i.e., the lateral dorsal nucleus, submedial nucleus) previously unidentified as L5 targets. We identified common patterns for these projections: all areas innervated both thalamus and the midbrain, and all areas innervated multiple thalamic targets, including those with core and matrix cell types (Jones, 1998). An examination of the terminal size within each of these targets suggests that terminal populations of L5 efferents are not consistently large but vary with cortical area and target; and in some cases, these include small terminals only. Overall, our data reveal more widespread and diverse L5 efferents than previously appreciated, suggesting a generalizable role for this cortical layer in influencing motor commands and cognitive processes.SIGNIFICANCE STATEMENT While the neocortex is responsible for coordination of complex behavior, it requires communication with subcortical regions to do so. It is specifically cortical layer 5 (L5) that is thought to underlie these behaviors, although it is unknown whether this holds true across functionally different cortical areas. Using a selective viral tracing method and transgenic mice, we examined the connectivity of four cortical regions (somatosensory, visual, motor and prefrontal cortex) to assess the generalizability of these L5 projections. All areas of cortex projected to overlapping as well as distinct thalamic and brainstem structures. Terminals within these regions varied in size, implicating that L5 has a broad and diverse impact on behavior.


Asunto(s)
Corteza Cerebral/química , Corteza Cerebral/fisiología , Tálamo/química , Tálamo/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/química , Vías Nerviosas/fisiología
6.
J Neurosci ; 39(4): 692-704, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30504278

RESUMEN

We now know that sensory processing in cortex occurs not only via direct communication between primary to secondary areas, but also via their parallel cortico-thalamo-cortical (i.e., trans-thalamic) pathways. Both corticocortical and trans-thalamic pathways mainly signal through glutamatergic class 1 (driver) synapses, which have robust and efficient synaptic dynamics suited for the transfer of information such as receptive field properties, suggesting the importance of class 1 synapses in feedforward, hierarchical processing. However, such a parallel arrangement has only been identified in sensory cortical areas: visual, somatosensory, and auditory. To test the generality of trans-thalamic pathways, we sought to establish its presence beyond purely sensory cortices to determine whether there is a trans-thalamic pathway parallel to the established primary somatosensory (S1) to primary motor (M1) pathway. We used trans-synaptic viral tracing, optogenetics in slice preparations, and bouton size analysis in the mouse (both sexes) to document that a circuit exists from layer 5 of S1 through the posterior medial nucleus of the thalamus to M1 with glutamatergic class 1 properties. This represents a hitherto unknown, robust sensorimotor linkage and suggests that the arrangement of parallel direct and trans-thalamic corticocortical circuits may be present as a general feature of cortical functioning.SIGNIFICANCE STATEMENT During sensory processing, feedforward pathways carry information such as receptive field properties via glutamatergic class 1 synapses, which have robust and efficient synaptic dynamics. As expected, class 1 synapses subserve the feedforward projection from primary to secondary sensory cortex, but also a route through specific higher-order thalamic nuclei, creating a parallel feedforward trans-thalamic pathway. We now extend the concept of cortical areas being connected via parallel, direct, and trans-thalamic circuits from purely sensory cortices to a sensorimotor cortical circuit (i.e., primary sensory cortex to primary motor cortex). This suggests a generalized arrangement for corticocortical communication.


Asunto(s)
Vías Eferentes/fisiología , Corteza Sensoriomotora/fisiología , Tálamo/fisiología , Animales , Corteza Auditiva/fisiología , Vías Eferentes/anatomía & histología , Fenómenos Electrofisiológicos/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Motora/fisiología , Optogenética , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Corteza Sensoriomotora/anatomía & histología , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Tálamo/anatomía & histología , Corteza Visual/fisiología
7.
Proc Natl Acad Sci U S A ; 114(30): E6212-E6221, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28696281

RESUMEN

Somatosensory information is thought to arrive in thalamus through two glutamatergic routes called the lemniscal and paralemniscal pathways via the ventral posterior medial (VPm) and posterior medial (POm) nuclei. Here we challenge the view that these pathways functionally represent parallel information routes. Using electrical stimulation and an optogenetic approach in brain slices from the mouse, we investigated the synaptic properties of the lemniscal and paralemniscal input to VPm and POm. Stimulation of the lemniscal pathway produced class 1, or "driver," responses in VPm relay cells, which is consistent with this being an information-bearing channel. However, stimulation of the paralemniscal pathway produced two distinct types of responses in POm relay cells: class 1 (driver) responses in 29% of the cells, and class 2, or "modulator," responses in the rest. Our data suggest that, unlike the lemniscal pathway, the paralemniscal one is not homogenous and that it is primarily modulatory. This finding requires major rethinking regarding the routes of somatosensory information to cortex and suggests that the paralemniscal route is chiefly involved in modulatory functions rather than simply being an information route parallel to the lemniscal channel.


Asunto(s)
Vías Nerviosas , Núcleos Talámicos/fisiología , Animales , Mapeo Encefálico , Estimulación Eléctrica , Técnicas In Vitro , Ratones , Corteza Somatosensorial/fisiología
8.
Eur J Neurosci ; 49(7): 928-937, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29520891

RESUMEN

My active collaboration with Ray Guillery started in 1968, when he was a Full Professor at the University of Wisconsin and I was a graduate student at the University of Pennsylvania. The collaboration lasted almost 50 years with virtually no breaks. Among the ideas we proposed are that glutamatergic pathways in thalamus and cortex can be classified into drivers and modulators; that many thalamic nuclei could be classified as higher order, meaning that they receive driving input from layer 5 of cortex and participate in cortico-thalamocortical circuits; and that much of the information relayed by thalamus serves as an efference copy for motor commands initiated by cortex.


Asunto(s)
Neurociencias/historia , Animales , Corteza Cerebral/fisiología , Historia del Siglo XX , Historia del Siglo XXI , Tálamo/fisiología , Vías Visuales/fisiología
9.
Eur J Neurosci ; 49(11): 1388-1399, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30585669

RESUMEN

We used whole cell recordings from slice preparations of mouse cortex to identify various inputs to neurons of layer 1. Two sensory cortical areas were targeted: a primary somatosensory area, namely, the barrel cortex of S1, and a higher order visual area, namely, V2M. Results were similar from both areas. By activating local inputs using photostimulation with caged glutamate, we also identified glutamatergic (and possibly GABAergic) inputs from all lower layers plus GABAergic inputs from nearby layer 1 neurons. However, the patterns of such inputs to layer 1 neurons showed great variation among cells. In separate experiments, we found that electrical stimulation of axons running parallel to the cortical surface in layer 1 also evoked a variety of convergent input types to layer 1 neurons, including glutamatergic "drivers" and "modulators" plus classic modulatory inputs, including serotonergic, nicotinic, α- and ß-adrenergic, from subcortical sites. Given that these layer 1 cells significantly affect the responses of other cortical neurons, especially via affecting the apical dendrites of pyramidal cells so important to cortical functioning, their role in cortical processing is significant. We believe that the data presented here lead to better understanding of the functioning of layer 1 neurons in their role of influencing cortical processing.


Asunto(s)
Neuronas/fisiología , Corteza Somatosensorial/fisiología , Animales , Estimulación Eléctrica , Femenino , Masculino , Ratones , Vías Nerviosas , Técnicas de Placa-Clamp
10.
J Neurosci ; 34(46): 15340-6, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25392501

RESUMEN

The main impetus for a mini-symposium on corticothalamic interrelationships was the recent number of studies highlighting the role of the thalamus in aspects of cognition beyond sensory processing. The thalamus contributes to a range of basic cognitive behaviors that include learning and memory, inhibitory control, decision-making, and the control of visual orienting responses. Its functions are deeply intertwined with those of the better studied cortex, although the principles governing its coordination with the cortex remain opaque, particularly in higher-level aspects of cognition. How should the thalamus be viewed in the context of the rest of the brain? Although its role extends well beyond relaying of sensory information from the periphery, the main function of many of its subdivisions does appear to be that of a relay station, transmitting neural signals primarily to the cerebral cortex from a number of brain areas. In cognition, its main contribution may thus be to coordinate signals between diverse regions of the telencephalon, including the neocortex, hippocampus, amygdala, and striatum. This central coordination is further subject to considerable extrinsic control, for example, inhibition from the basal ganglia, zona incerta, and pretectal regions, and chemical modulation from ascending neurotransmitter systems. What follows is a brief review on the role of the thalamus in aspects of cognition and behavior, focusing on a summary of the topics covered in a mini-symposium held at the Society for Neuroscience meeting, 2014.


Asunto(s)
Conducta/fisiología , Cognición/fisiología , Tálamo/fisiología , Animales , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Humanos , Aprendizaje/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Tálamo/citología
11.
J Neurophysiol ; 113(9): 3090-7, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25717161

RESUMEN

The thalamic reticular nucleus (TRN) is a thin layer of GABAergic cells lying rostral and lateral to the dorsal thalamus, and its projection to thalamic relay cells (i.e., the reticulothalamic pathway) strongly inhibits these cells. In an attempt to extend earlier studies of reticulothalamic connections to sensory thalamic nuclei, we used laser-scanning photostimulation to study the reticulothalamic projections to the main motor thalamic relays, the ventral anterior and lateral (VA and VL) nuclei, as well as to the nearby central lateral (CL) thalamic nucleus. VA/VL and the earlier studied somatosensory thalamic nuclei are considered "core" nuclei with topographic thalamocortical projections, whereas CL is thought to be a "matrix" nucleus with diffuse thalamocortical projections. We found that the TRN input footprints to VA/VL and CL are spatially localized and topographic and generally conform to the patterns established earlier for the TRN projections to sensory thalamic relays. These remarkable similarities suggest similar organization of reticulothalamic pathways and TRN regulation of thalamocortical communication for motor and sensory systems and perhaps also for core and matrix thalamus. Furthermore, we found that VA/VL and CL shared overlapping TRN input regions, suggesting that CL may also be involved in the relay of motor information.


Asunto(s)
Mapeo Encefálico , Vías Eferentes/anatomía & histología , Vías Eferentes/fisiología , Núcleos Talámicos/citología , Núcleos Talámicos/fisiología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Femenino , Procesamiento de Imagen Asistido por Computador , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Neuronas/fisiología , Técnicas de Placa-Clamp , Estimulación Luminosa
12.
J Neurophysiol ; 113(7): 2646-52, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25652932

RESUMEN

Metabotropic glutamate receptors (mGluRs) are widely distributed in the central nervous system and modulate the release of neurotransmitters in different ways. We have previously shown that activation of presynaptic group II mGluRs reduces the gain of GABAergic inputs in both primary visual and auditory cortices (V1 and A1). In the present study, we sought to determine whether activation of mGluRs can also affect the inhibitory inputs in thalamus. Using whole cell recordings in a mouse slice preparation, we studied two GABAergic inputs to thalamic relay cells: that of the thalamic reticular nucleus (TRN) to cells of the ventral posteromedial nucleus (VPM) and that of interneurons to cells of the lateral geniculate nucleus (LGN). We found that activation of mGluRs significantly reduced the amplitudes of inhibitory postsynaptic currents (IPSCs) evoked from TRN inputs to VPM cells, and further experiments indicated that this was due to activation of presynaptic group I and group II mGluRs. Similar results were found in the interneuronal inputs to LGN cells. Activation of presynaptic group I (type 1 but not type 5) and group II mGluRs significantly reduced the amplitudes of evoked IPSCs of the axonal inputs to relay cells, and additional experiments were consistent with previous observations that activation of type 5 mGluRs on the dendritic terminals of interneurons enhanced postsynaptic IPSCs. We concluded that group I and II mGluRs may generally reduce the amplitude of evoked GABAergic IPSCs of axonal inputs to thalamic relay cells, operating through presynaptic mechanisms, and this extends our previous findings in cortex.


Asunto(s)
Neuronas GABAérgicas/fisiología , Cuerpos Geniculados/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Núcleos Talámicos Ventrales/fisiología , Animales , Potenciales Postsinápticos Inhibidores , Interneuronas/fisiología , Ratones , Ratones Endogámicos BALB C , Inhibición Neural , Terminales Presinápticos/fisiología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores
13.
J Neurophysiol ; 113(7): 2400-7, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25632081

RESUMEN

The primary somatosensory (S1) and primary motor (M1) cortices are reciprocally connected, and their interaction has long been hypothesized to contribute to coordinated motor output. Very little is known, however, about the nature and synaptic properties of the S1 input to M1. Here we wanted to take advantage of a previously developed sensorimotor slice preparation that preserves much of the S1-to-M1 connectivity (Rocco MM, Brumberg JC. J Neurosci Methods 162: 139-147, 2007), as well as available optogenetic methodologies, in order to investigate the synaptic profile of this projection. Our data show that S1 input to pyramidal cells of M1 is highly homogeneous, possesses many features of a "driver" pathway, such as paired-pulse depression and lack of metabotropic glutamate receptor activation, and is mediated through axons that terminate in both small and large synaptic boutons. Our data suggest that S1 provides M1 with afferents that possess synaptic and anatomical characteristics ideal for the delivery of strong inputs that can "drive" postsynaptic M1 cells, thereby potentially affecting their output.


Asunto(s)
Conectoma/métodos , Corteza Motora/citología , Corteza Motora/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Red Nerviosa/citología , Red Nerviosa/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Optogenética
14.
J Neurophysiol ; 111(11): 2287-97, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24623509

RESUMEN

Metabotropic glutamate receptors (mGluRs) have a ubiquitous distribution in the central nervous system and often serve to regulate the release of neurotransmitters. We have previously shown that activation of both presynaptic and postsynaptic mGluRs can affect the gain of glutamatergic inputs in both thalamus and cortex. In the present study, we sought to determine the effect of mGluR activation on GABAergic inputs in cortex. Using whole cell recordings in a mouse slice preparation of either primary visual or auditory cortex (V1 or A1), we tested the effects on mGluRs by applying various agonists to the slice. Two pathways were tested in each area: the GABAergic inputs in layers 2/3 activated from layer 4 and the GABAergic inputs in layer 4 activated from adjacent layer 4. In both of these pathways, we found that activation of mGluRs significantly reduced the amplitude of the evoked inhibitory postsynaptic currents. Because the effects were not blocked by the addition of GDPßS to the recording electrode, and because mGluR agonists did not affect responses to photostimulation of GABA in a low-Ca(2+) and high-Mg(2+) bathing solution, we concluded this reduction was due to activation of presynaptic mGluRs. Furthermore, using specific mGluR agonists, we found that group II mGluRs, but not group I mGluRs, were involved in these modulatory effects. Because similar results were found in both pathways in V1 and A1, a possible cortical pattern for these effects is suggested.


Asunto(s)
Corteza Auditiva/fisiología , Neuronas GABAérgicas/fisiología , Red Nerviosa/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Corteza Visual/fisiología , Animales , Células Cultivadas , Ratones , Ratones Endogámicos BALB C , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología
16.
Proc Natl Acad Sci U S A ; 108(44): 18156-61, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22025694

RESUMEN

Primary somatosensory cortex (S1) receives two distinct classes of thalamocortical input via the lemniscal and paralemniscal pathways, the former via ventral posterior medial nucleus (VPM), and the latter, from the posterior medial nucleus (POm). These projections have been described as parallel thalamocortical pathways. Although the VPM thalamocortical projection has been studied in depth, several details of the POm projection to S1 are unknown. We studied the synaptic properties and anatomical features in the mouse of the projection from POm to all layers of S1 and to layer 4 of secondary somatosensory cortex (S2). Neurons in S1 responded to stimulation of POm with what has been termed Class 2 properties (paired-pulse facilitation, small initial excitatory postsynaptic potentials (EPSPs), a graded activation profile, and a metabotropic receptor component; thought to be modulatory), whereas neurons in layer 4 of S2 responded with Class 1A properties (paired-pulse depression, large initial EPSPs, an all-or-none activation profile, and no metabotropic receptor component, thought to be a main information input). Also, labeling from POm produced small boutons in S1, whereas both small and large boutons were found in S2. Our data suggest that the lemniscal and paralemniscal projections should not be thought of as parallel information pathways to S1 and that the paralemniscal projection may instead provide modulatory inputs to S1.


Asunto(s)
Corteza Somatosensorial/fisiología , Tálamo/fisiología , Animales , Ratones , Ratones Endogámicos BALB C
17.
Elife ; 132024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856045

RESUMEN

A key to motor control is the motor thalamus, where several inputs converge. One excitatory input originates from layer 5 of primary motor cortex (M1L5), while another arises from the deep cerebellar nuclei (Cb). M1L5 terminals distribute throughout the motor thalamus and overlap with GABAergic inputs from the basal ganglia output nuclei, the internal segment of the globus pallidus (GPi), and substantia nigra pars reticulata (SNr). In contrast, it is thought that Cb and basal ganglia inputs are segregated. Therefore, we hypothesized that one potential function of the GABAergic inputs from basal ganglia is to selectively inhibit, or gate, excitatory signals from M1L5 in the motor thalamus. Here, we tested this possibility and determined the circuit organization of mouse (both sexes) motor thalamus using an optogenetic strategy in acute slices. First, we demonstrated the presence of a feedforward transthalamic pathway from M1L5 through motor thalamus. Importantly, we discovered that GABAergic inputs from the GPi and SNr converge onto single motor thalamic cells with excitatory synapses from M1L5. Separately, we also demonstrate that, perhaps unexpectedly, GABAergic GPi and SNr inputs converge with those from the Cb. We interpret these results to indicate that a role of the basal ganglia is to gate the thalamic transmission of M1L5 and Cb information to cortex.


Asunto(s)
Ganglios Basales , Cerebelo , Corteza Motora , Tálamo , Animales , Corteza Motora/fisiología , Ratones , Ganglios Basales/fisiología , Tálamo/fisiología , Masculino , Femenino , Cerebelo/fisiología , Vías Nerviosas/fisiología , Optogenética , Neuronas GABAérgicas/fisiología , Ratones Endogámicos C57BL
18.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559179

RESUMEN

A key to motor control is the motor thalamus, where several inputs converge. One excitatory input originates from layer 5 of primary motor cortex (M1L5), while another arises from the deep cerebellar nuclei (Cb). M1L5 terminals distribute throughout the motor thalamus and overlap with GABAergic inputs from the basal ganglia output nuclei, the internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr). In contrast, it is thought that Cb and basal ganglia inputs are segregated. Therefore, we hypothesized that one potential function of the GABAergic inputs from basal ganglia is to selectively inhibit, or gate, excitatory signals from M1L5 in the motor thalamus. Here, we tested this possibility and determined the circuit organization of mouse (both sexes) motor thalamus using an optogenetic strategy in acute slices. First, we demonstrated the presence of a feedforward transthalamic pathway from M1L5 through motor thalamus. Importantly, we discovered that GABAergic inputs from the GPi and SNr converge onto single motor thalamic cells with excitatory synapses from M1L5 and, unexpectedly, Cb as well. We interpret these results to indicate that a role of the basal ganglia is to gate the thalamic transmission of M1L5 and Cb information to cortex.

19.
J Neurosci ; 32(21): 7364-72, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22623682

RESUMEN

Glutamatergic pathways in various thalamic and cortical circuits have been classified into two types: Class 1 and Class 2, where it has been suggested that Class 1 carries the main information for processing, and Class 2 is mainly modulatory. We now extend this to the local circuitry of visual cortex of the mouse by demonstrating the modulatory actions on the Class 1 pathway from layer 4 to layers 2/3 of a Class 2 input from adjacent locations in layers 2/3. We found that this Class 2 input produces a long-lasting hyperpolarization and suppresses the initial responses of input from layer 4 and that this involves the postsynaptic activation of Group II metabotropic glutamate receptors. This modulation also shifts the paired pulse ratio of the layer 4 input from depression to facilitation.


Asunto(s)
Inhibición Neural/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Corteza Visual/fisiología , Animales , Estimulación Eléctrica/métodos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , Inhibición Neural/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Corteza Visual/efectos de los fármacos , Corteza Visual/metabolismo
20.
J Physiol ; 591(13): 3125-31, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23359668

RESUMEN

Glutamatergic pathways are a major information-carrying and -processing network of inputs in the brain. There is considerable evidence suggesting that glutamatergic pathways do not represent a homogeneous group and that they can be segregated into at least two broad categories. Class 1 glutamatergic inputs, which are suggested to be the main information carriers, are characterized by a number of unique synaptic and anatomical features, such as the large synaptic boutons with which they often terminate. On the other hand, Class 2 inputs, which are thought to play a modulatory role, are associated, amongst other features, with exclusively small terminal boutons. Here we summarize and briefly discuss these two classes of glutamatergic input and how their unique features, including their terminal bouton size and anatomy, are related to their suggested function.


Asunto(s)
Terminales Presinápticos/fisiología , Corteza Cerebral/fisiología , Ácido Glutámico/fisiología , Transmisión Sináptica , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA