Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 22(1): 91, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35392807

RESUMEN

BACKGROUND: Obesity, metabolic disease and some psychiatric conditions are associated with changes to relative abundance of bacterial species and specific genes in the faecal microbiome. Little is known about the impact of pharmacologically induced weight loss on distinct microbiome species and their respective gene programs in obese individuals. METHODOLOGY: Using shotgun metagenomics, the composition of the microbiome was obtained for two cohorts of obese female Wistar rats (n = 10-12, total of 82) maintained on a high fat diet before and after a 42-day treatment with a panel of four investigatory or approved anti-obesity drugs (tacrolimus/FK506, bupropion, naltrexone and sibutramine), alone or in combination. RESULTS: Only sibutramine treatment induced consistent weight loss and improved glycaemic control in the obese rats. Weight loss was associated with reduced food intake and changes to the faecal microbiome in multiple microbial taxa, genes, and pathways. These include increased ß-diversity, increased relative abundance of multiple Bacteroides species, increased Bacteroides/Firmicutes ratio and changes to abundance of genes and species associated with obesity-induced inflammation, particularly those encoding components of the flagellum and its assembly. CONCLUSIONS: Sibutramine-induced weight loss in obese rats is associated with improved metabolic health, and changes to the faecal microbiome consistent with a reduction in obesity-induced bacterially-driven inflammation.


Asunto(s)
Microbioma Gastrointestinal , Animales , Bacteroides , Femenino , Inflamación , Obesidad/microbiología , Ratas , Ratas Wistar , Pérdida de Peso
2.
Mol Cell Biol ; 27(8): 2848-60, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17283050

RESUMEN

Forkhead (Fkh) transcription factors influence cell death, proliferation, and differentiation and the cell cycle. In Saccharomyces cerevisiae, Fkh2 both activates and represses transcription of CLB2, encoding a B-type cyclin. CLB2 is expressed during G(2)/M phase and repressed during G(1). Fkh2 recruits the coactivator Ndd1, an interaction which is promoted by Clb2/Cdk1-dependent phosphorylation of Ndd1, suggesting that CLB2 is autoregulated. Ndd1 is proposed to function by antagonizing Fkh2-mediated repression, but nothing is known about the mechanism. Here we ask how Fkh2 represses CLB2. We show that Fkh2 controls a repressive chromatin structure that initiates in the early coding region of CLB2 and spreads up the promoter during the M and G(1) phases. The Isw2 chromatin-remodeling ATPase cooperates with Fkh2 to remodel the chromatin and repress CLB2 expression throughout the cell cycle. In addition, the related factors Isw1 and Fkh1 configure the chromatin at the early coding region and negatively regulate CLB2 expression but only during G(2)/M phase. Thus, the cooperative actions of two forkhead transcription factors and two chromatin-remodeling ATPases combine to regulate CLB2. We propose that chromatin-mediated repression by Isw1 and Isw2 may serve to limit activation of CLB2 expression by the Clb2/Cdk1 kinase during G(2)/M and to fully repress expression during G(1).


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina/genética , Ciclina B/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Letales , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Saccharomyces cerevisiae/enzimología , Supresión Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA