Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Tissue Eng Part A ; 30(13-14): 409-420, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38481121

RESUMEN

Osteoarthritis is a debilitating chronic joint disorder that affects millions of people worldwide. Since palliative and surgical treatments cannot completely regenerate hyaline cartilage within the articulating joint, osteochondral (OC) tissue engineering has been explored to heal OC defects. Utilizing computational simulations and three-dimensional (3D) printing, we aimed to build rationale around fabricating OC scaffolds with enhanced biomechanics. First, computational simulations revealed that interfacial fibrils within a bilayer alter OC scaffold deformation patterns by redirecting load-induced stresses toward the top of the cartilage layer. Principal component analysis revealed that scaffolds with 800 µm long fibrils (scaffolds 8A-8H) possessed optimal biomechanical properties to withstand compression and shear forces. While compression testing indicated that OC scaffolds with 800 µm fibrils did not have greater compressive moduli than other scaffolds, interfacial shear tests indicated that scaffold 8H possessed the greatest shear strength. Lastly, failure analysis demonstrated that yielding or buckling models describe interfacial fibril failure depending on fibril slenderness S. Specifically for scaffolds with packing density n = 6 and n = 8, the yielding failure model fits experimental loads with S < 10, while the buckling model fitted scaffolds with S < 10 slenderness. The research presented provides critical insights into designing 3D printed interfacial scaffolds with refined biomechanics toward improving OC tissue engineering outcomes.


Asunto(s)
Impresión Tridimensional , Andamios del Tejido , Soporte de Peso , Andamios del Tejido/química , Animales , Ingeniería de Tejidos/métodos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Humanos , Análisis de Elementos Finitos , Estrés Mecánico
2.
J Biomed Mater Res A ; 111(7): 884-895, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36815502

RESUMEN

Skin cancer is one of the most ubiquitous forms of cancer that is often overdiagnosed or missed by traditional diagnostic techniques. Bioimpedance spectroscopy (BIS) is a technology that aims to take advantage of the variations in electrical properties of tissue to identify ectopic formations. It is difficult to develop BIS technologies without obtaining tumor tissue samples. One solution is to use a "tissue phantom," a synthetic structure that mimics the properties of tissue. Current solutions using natural biomaterials, such as gelatin, have not been able to create complex tissue geometries that are vital to honing BIS diagnostics. However, semi-synthetic polymers, such has gelatin methacrylate (GelMA), offer the benefits of possessing similar electrical properties to their respective source biomaterial while being 3D printable. In this work, we first measured the impedance of porcine dermal tissue. We then applied these impedance measurements to create an electrically accurate tissue phantom using a photocurable hydrogel, GelMA, and varying concentrations of NaCl, aluminum powder, and titanium dioxide powder.


Asunto(s)
Materiales Biocompatibles , Gelatina , Porcinos , Animales , Gelatina/química , Polvos , Materiales Biocompatibles/química , Impedancia Eléctrica , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Hidrogeles/química , Andamios del Tejido/química , Metacrilatos/química
3.
Biofabrication ; 14(2)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35120345

RESUMEN

Osteoarthritis is a highly prevalent rheumatic musculoskeletal disorder that commonly affects many joints. Repetitive joint overloading perpetuates the damage to the affected cartilage, which undermines the structural integrity of the osteochondral unit. Various tissue engineering strategies have been employed to design multiphasic osteochondral scaffolds that recapitulate layer-specific biomechanical properties, but the inability to fully satisfy mechanical demands within the joint has limited their success. Through computational modeling and extrusion-based bioprinting, we attempted to fabricate a biphasic osteochondral scaffold with improved shear properties and a mechanically strong interface. A 3D stationary solid mechanics model was developed to simulate the effect of lateral shear force on various thermoplastic polymer/hydrogel scaffolds with a patterned interface. Additionally, interfacial shear tests were performed on bioprinted polycaprolactone (PCL)/hydrogel interface scaffolds. The first simulation showed that the PCL/gelatin methacrylate (GelMA) and PCL/polyethylene glycol diacrylate (PEGDA) scaffolds interlocking hydrogel and PCL at interface in a 1:1 ratio possessed the largest average tensile (PCL/GelMA: 80.52 kPa; PCL/PEGDA: 79.75 kPa) and compressive stress (PCL/GelMA: 74.71 kPa; PCL/PEGDA: 73.83 kPa). Although there were significant differences in shear strength between PCL/GelMA and PCL/PEGDA scaffolds, no significant difference was observed among the treatment groups within both scaffold types. Lastly, the hypothetical simulations of potential biphasic 3D printed scaffolds showed that for every order of magnitude decrease in Young's modulus (E) of the soft bioink, all the scaffolds underwent an exponential increase in average displacement at the cartilage and interface layers. The following work provides valuable insights into the biomechanics of 3D printed osteochondral scaffolds, which will help inform future scaffold designs for enhanced regenerative outcomes.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Gelatina , Hidrogeles , Metacrilatos , Impresión Tridimensional , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA