Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298875

RESUMEN

Synaptic plasticity is an extensively studied cellular correlate of learning and memory in which NMDARs play a starring role. One of the most interesting features of NMDARs is their ability to act as a co-incident detector. It is unique amongst neurotransmitter receptors in this respect. Co-incident detection is possible because the opening of NMDARs requires membrane depolarisation and the binding of glutamate. Opening of NMDARs also requires a co-agonist. Although the dynamic regulation of glutamate and membrane depolarization have been well studied in coincident detection, the role of the co-agonist site is unexplored. It turns out that non-neuronal glial cells, astrocytes, regulate co-agonist availability, giving them the ability to influence synaptic plasticity. The unique morphology and spatial arrangement of astrocytes at the synaptic level affords them the capacity to sample and integrate information originating from unrelated synapses, regardless of any pre-synaptic and post-synaptic commonality. As astrocytes are classically considered slow responders, their influence at the synapse is widely recognized as modulatory. The aim herein is to reconsider the potential of astrocytes to participate directly in ongoing synaptic NMDAR activity and co-incident detection.


Asunto(s)
Astrocitos/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Ácido Glutámico/metabolismo , Humanos , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo
2.
J Physiol ; 596(13): 2547-2564, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29717784

RESUMEN

KEY POINTS: Giant trypsin-containing endocytic vacuoles are formed in pancreatic acinar cells stimulated with inducers of acute pancreatitis. F-actin envelops endocytic vacuoles and regulates their properties. Endocytic vacuoles can rupture and release their content into the cytosol of acinar cells. Endocytic vacuoles can fuse with the plasma membrane of acinar cells and exocytose their content. ABSTRACT: Intrapancreatic activation of trypsinogen is an early event in and hallmark of the development of acute pancreatitis. Endocytic vacuoles, which form by disconnection and transport of large post-exocytic structures, are the only resolvable sites of the trypsin activity in live pancreatic acinar cells. In the present study, we characterized the dynamics of endocytic vacuole formation induced by physiological and pathophysiological stimuli and visualized a prominent actin coat that completely or partially surrounded endocytic vacuoles. An inducer of acute pancreatitis taurolithocholic acid 3-sulphate and supramaximal concentrations of cholecystokinin triggered the formation of giant (more than 2.5 µm in diameter) endocytic vacuoles. We discovered and characterized the intracellular rupture of endocytic vacuoles and the fusion of endocytic vacuoles with basal and apical regions of the plasma membrane. Experiments with specific protease inhibitors suggest that the rupture of endocytic vacuoles is probably not induced by trypsin or cathepsin B. Perivacuolar filamentous actin (observed on the surface of ∼30% of endocytic vacuoles) may play a stabilizing role by preventing rupture of the vacuoles and fusion of the vacuoles with the plasma membrane. The rupture and fusion of endocytic vacuoles allow trypsin to escape the confinement of a membrane-limited organelle, gain access to intracellular and extracellular targets, and initiate autodigestion of the pancreas, comprising a crucial pathophysiological event.


Asunto(s)
Células Acinares/patología , Exocitosis , Páncreas Exocrino/patología , Pancreatitis/patología , Vesículas Transportadoras/patología , Vacuolas/fisiología , Células Acinares/metabolismo , Enfermedad Aguda , Animales , Masculino , Ratones , Páncreas Exocrino/metabolismo , Pancreatitis/etiología , Vesículas Transportadoras/metabolismo
3.
Proc Natl Acad Sci U S A ; 108(14): 5873-8, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21436055

RESUMEN

Alcohol abuse is a major global health problem, but there is still much uncertainty about the mechanisms of action. So far, the effects of ethanol on ion channels in the plasma membrane have received the most attention. We have now investigated actions on intracellular calcium channels in pancreatic acinar cells. Our aim was to discover the mechanism by which alcohol influences calcium homeostasis and thereby understand how alcohol can trigger premature intracellular trypsinogen activation, which is the initiating step for alcohol-induced pancreatitis. We used intact or two-photon permeabilized acinar cells isolated from wild-type mice or mice in which inositol trisphosphate receptors of type 2 or types 2 and 3 were knocked out. In permeabilized pancreatic acinar cells even a relatively low ethanol concentration elicited calcium release from intracellular stores and intracellular trypsinogen activation. The calcium sensor calmodulin (at a normal intracellular concentration) markedly reduced ethanol-induced calcium release and trypsinogen activation in permeabilized cells, effects prevented by the calmodulin inhibitor peptide. A calmodulin activator virtually abolished the modest ethanol effects in intact cells. Both ethanol-elicited calcium liberation and trypsinogen activation were significantly reduced in cells from type 2 inositol trisphosphate receptor knockout mice. More profound reductions were seen in cells from double inositol trisphosphate receptor (types 2 and 3) knockout mice. The inositol trisphosphate receptors, required for normal pancreatic stimulus-secretion coupling, are also responsible for the toxic ethanol action. Calmodulin protects by reducing calcium release sensitivity.


Asunto(s)
Alcoholismo/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Activación Enzimática/fisiología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Páncreas/enzimología , Tripsinógeno/metabolismo , Animales , Calmodulina/farmacología , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Técnicas de Inactivación de Genes , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Ratones Transgénicos , Páncreas/citología
4.
Biochem J ; 436(2): 231-9, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21568942

RESUMEN

Orai1 proteins have been recently identified as subunits of SOCE (store-operated Ca²âº entry) channels. In primary isolated PACs (pancreatic acinar cells), Orai1 showed remarkable co-localization and co-immunoprecipitation with all three subtypes of IP3Rs (InsP3 receptors). The co-localization between Orai1 and IP3Rs was restricted to the apical part of PACs. Neither co-localization nor co-immunoprecipitation was affected by Ca²âº store depletion. Importantly we also characterized Orai1 in basal and lateral membranes of PACs. The basal and lateral membranes of PACs have been shown previously to accumulate STIM1 (stromal interaction molecule 1) puncta as a result of Ca²âº store depletion. We therefore conclude that these polarized secretory cells contain two pools of Orai1: an apical pool that interacts with IP3Rs and a basolateral pool that interacts with STIM1 following the Ca²âº store depletion. Experiments on IP3R knockout animals demonstrated that the apical Orai1 localization does not require IP3Rs and that IP3Rs are not necessary for the activation of SOCE. However, the InsP3-releasing secretagogue ACh (acetylcholine) produced a negative modulatory effect on SOCE, suggesting that activated IP3Rs could have an inhibitory effect on this Ca²âº entry mechanism.


Asunto(s)
Canales de Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Páncreas Exocrino/química , Páncreas Exocrino/citología , Animales , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína ORAI1 , Páncreas/química , Páncreas/citología , Páncreas/metabolismo , Páncreas Exocrino/metabolismo
5.
Proc Natl Acad Sci U S A ; 106(26): 10758-63, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19528657

RESUMEN

Toxic alcohol effects on pancreatic acinar cells, causing the often fatal human disease acute pancreatitis, are principally mediated by fatty acid ethyl esters (non-oxidative products of alcohol and fatty acids), emptying internal stores of Ca(2+). This excessive Ca(2+) liberation induces Ca(2+)-dependent necrosis due to intracellular trypsin activation. Our aim was to identify the specific source of the Ca(2+) release linked to the fatal intracellular protease activation. In 2-photon permeabilized mouse pancreatic acinar cells, we monitored changes in the Ca(2+) concentration in the thapsigargin-sensitive endoplasmic reticulum (ER) as well as in a bafilomycin-sensitive acid compartment, localized exclusively in the apical granular pole. We also assessed trypsin activity in the apical granular region. Palmitoleic acid ethyl ester (POAEE) elicited Ca(2+) release from both the ER as well as the acid pool, but trypsin activation depended predominantly on Ca(2+) release from the acid pool, that was mainly mediated by functional inositol 1,4,5- trisphosphate receptors (IP(3)Rs) of types 2 and 3. POAEE evoked very little Ca(2+) release and trypsin activation when IP(3)Rs of both types 2 and 3 were knocked out. Antibodies against IP(3)Rs of types 2 and 3, but not type 1, markedly inhibited POAEE-elicited Ca(2+) release and trypsin activation. We conclude that Ca(2+) release through IP(3)Rs of types 2 and 3 in the acid granular Ca(2+) store induces intracellular protease activation, and propose that this is a critical process in the initiation of alcohol-related acute pancreatitis.


Asunto(s)
Calcio/metabolismo , Éter/farmacología , Ácidos Grasos Monoinsaturados/farmacología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Páncreas/efectos de los fármacos , Tripsina/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Activación Enzimática/efectos de los fármacos , Éter/química , Ácidos Grasos Monoinsaturados/química , Femenino , Genotipo , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/citología , Páncreas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Fosfolipasas de Tipo C/metabolismo
6.
Front Cell Neurosci ; 15: 695817, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393726

RESUMEN

Astrocytes are sensitive to ongoing neuronal/network activities and, accordingly, regulate neuronal functions (synaptic transmission, synaptic plasticity, behavior, etc.) by the context-dependent release of several gliotransmitters (e.g., glutamate, glycine, D-serine, ATP). To sense diverse input, astrocytes express a plethora of G-protein coupled receptors, which couple, via Gi/o and Gq, to the intracellular Ca2+ release channel IP3-receptor (IP3R). Indeed, manipulating astrocytic IP3R-Ca2+ signaling is highly consequential at the network and behavioral level: Depleting IP3R subtype 2 (IP3R2) results in reduced GPCR-Ca2+ signaling and impaired synaptic plasticity; enhancing IP3R-Ca2+ signaling affects cognitive functions such as learning and memory, sleep, and mood. However, as a result of discrepancies in the literature, the role of GPCR-IP3R-Ca2+ signaling, especially under physiological conditions, remains inconclusive. One primary reason for this could be that IP3R2 has been used to represent all astrocytic IP3Rs, including IP3R1 and IP3R3. Indeed, IP3R1 and IP3R3 are unique Ca2+ channels in their own right; they have unique biophysical properties, often display distinct distribution, and are differentially regulated. As a result, they mediate different physiological roles to IP3R2. Thus, these additional channels promise to enrich the diversity of spatiotemporal Ca2+ dynamics and provide unique opportunities for integrating neuronal input and modulating astrocyte-neuron communication. The current review weighs evidence supporting the existence of multiple astrocytic-IP3R isoforms, summarizes distinct sub-type specific properties that shape spatiotemporal Ca2+ dynamics. We also discuss existing experimental tools and future refinements to better recapitulate the endogenous activities of each IP3R isoform.

7.
Neuron ; 98(5): 935-944.e5, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29779943

RESUMEN

Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB1 receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB1 receptors from astroglial cells (GFAP-CB1-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB1 receptors increased intracellular astroglial Ca2+ levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB1-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB1-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs.


Asunto(s)
Astrocitos/metabolismo , Neuronas/metabolismo , Receptor Cannabinoide CB1/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Reconocimiento en Psicología/fisiología , Serina/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Hipocampo , Técnicas In Vitro , Potenciación a Largo Plazo , Memoria , Ratones , Ratones Noqueados , Plasticidad Neuronal , Receptor Cannabinoide CB1/metabolismo
8.
Cell Rep ; 13(12): 2768-80, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26711343

RESUMEN

GABAergic synaptic transmission regulates brain function by establishing the appropriate excitation-inhibition (E/I) balance in neural circuits. The structure and function of GABAergic synapses are sensitive to destabilization by impinging neurotransmitters. However, signaling mechanisms that promote the restorative homeostatic stabilization of GABAergic synapses remain unknown. Here, by quantum dot single-particle tracking, we characterize a signaling pathway that promotes the stability of GABAA receptor (GABAAR) postsynaptic organization. Slow metabotropic glutamate receptor signaling activates IP3 receptor-dependent calcium release and protein kinase C to promote GABAAR clustering and GABAergic transmission. This GABAAR stabilization pathway counteracts the rapid cluster dispersion caused by glutamate-driven NMDA receptor-dependent calcium influx and calcineurin dephosphorylation, including in conditions of pathological glutamate toxicity. These findings show that glutamate activates distinct receptors and spatiotemporal patterns of calcium signaling for opposing control of GABAergic synapses.


Asunto(s)
Calcio/metabolismo , Neuronas GABAérgicas/fisiología , Ácido Glutámico/metabolismo , Receptores de GABA-A/metabolismo , Transmisión Sináptica/fisiología , Animales , Señalización del Calcio , Neuronas GABAérgicas/metabolismo , Ratones Noqueados , Ratas , Ratas Wistar
9.
Cell Calcium ; 58(3): 237-45, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26100948

RESUMEN

Intracellular Ca(2+) release is mostly mediated by inositol trisphosphate, but intracellular cyclic-ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are important messengers in many systems. Whereas cADPR generally activates type 2 ryanodine receptors (RyR2s), the NAADP-activated Ca(2+) release mechanism is less clear. Using knockouts and antibodies against RyRs and Two-Pore Channels (TPCs), we have compared their relative importance for NAADP-induced Ca(2+) release from two-photon permeabilized pancreatic acinar cells. In these cells, cholecystokinin-elicited Ca(2+) release is mediated by NAADP. TPC2-KO reduced NAADP-induced Ca(2+) release by 64%, but the combination of TPC2-KO and an antibody against TPC1, significantly reduced Ca(2+) release by 86% (64% vs. 86%, p<0.0002). In RyR3-KO, NAADP-evoked Ca(2+) release reduced by ∼50% but, when combined with antibodies against RyR1, responses were 90% inhibited. Antibodies against RyR2 had practically no effect on NAADP-evoked Ca(2+) release, but reduced release in response to cADPR by 55%. Antibodies to RyR1 inhibited NAADP-induced Ca(2+) liberation by 81%, but only reduced cADPR responses by 30%. We conclude that full NAADP-mediated Ca(2+) release requires both TPCs and RyRs. The sequence of relative importance for NAADP-elicited Ca(2+) release from the all stores is RyR1>TPC2>RyR3>TPC1>>RyR2. However, when assessing NAADP-induced Ca(2+) release solely from the acidic stores (granules/endosomes/lysosomes), antibodies against TPC2 and TPC1 virtually abolished the Ca(2+) liberation as did antibodies against RyR1 and RyR3. Our results indicate that the primary, but very small, NAADP-elicited Ca(2+) release via TPCs from endosomes/lysosomes triggers the detectable Ca(2+)-induced Ca(2+) release via RyR1 and RyR3 occurring from the granules and the ER.


Asunto(s)
Canales de Calcio/fisiología , Señalización del Calcio , Calcio/metabolismo , NADP/análogos & derivados , Páncreas Exocrino/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Células Acinares/metabolismo , Células Acinares/ultraestructura , Animales , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Noqueados , NADP/metabolismo , Páncreas Exocrino/ultraestructura
10.
Sci Signal ; 5(218): ra27, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22472649

RESUMEN

Metabotropic glutamate receptor (mGluR)-dependent calcium ion (Ca²+) signaling in astrocytic processes regulates synaptic transmission and local blood flow essential for brain function. However, because of difficulties in imaging astrocytic processes, the subcellular spatial organization of mGluR-dependent Ca²+ signaling is not well characterized and its regulatory mechanism remains unclear. Using genetically encoded Ca²+ indicators, we showed that despite global stimulation by an mGluR agonist, astrocyte processes intrinsically exhibited a marked enrichment of Ca²+ responses. Immunocytochemistry indicated that these polarized Ca²+ responses could be attributed to increased density of surface mGluR5 on processes relative to the soma. Single-particle tracking of surface mGluR5 dynamics revealed a membrane barrier that blocked the movement of mGluR5 between the processes and the soma. Overexpression of mGluR or expression of its carboxyl terminus enabled diffusion of mGluR5 between the soma and the processes, disrupting the polarization of mGluR5 and of mGluR-dependent Ca²+ signaling. Together, our results demonstrate an mGluR5-selective diffusion barrier between processes and soma that compartmentalized mGluR Ca²+ signaling in astrocytes and may allow control of synaptic and vascular activity in specific subcellular domains.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Algoritmos , Animales , Astrocitos/citología , Señalización del Calcio/efectos de los fármacos , Calmodulina/genética , Calmodulina/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Difusión , Agonistas de Aminoácidos Excitadores/farmacología , Recuperación de Fluorescencia tras Fotoblanqueo , Glicina/análogos & derivados , Glicina/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Cinética , Neuronas/citología , Puntos Cuánticos , Ratas , Ratas Wistar , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Resorcinoles/farmacología , Transfección
11.
Am J Physiol Gastrointest Liver Physiol ; 293(6): G1333-8, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17717043

RESUMEN

Here we describe a technique that allows us to visualize in real time the formation and dynamics (fusion, changes of shape, and translocation) of vacuoles in living cells. The technique involves infusion of a dextran-bound fluorescent probe into the cytosol of the cell via a patch pipette, using the whole-cell patch-clamp configuration. Experiments were conducted on pancreatic acinar cells stimulated with supramaximal concentrations of cholecystokinin (CCK). The vacuoles, forming in the cytoplasm of the cell, were revealed as dark imprints on a bright fluorescence background, produced by the probe and visualized by confocal microscopy. A combination of two dextran-bound probes, one infused into the cytosol and the second added to the extracellular solution, was used to identify endocytic and nonendocytic vacuoles. The cytosolic dextran-bound probe was also used together with a Golgi indicator to illustrate the possibility of combining the probes and identifying the localization of vacuoles with respect to other cellular organelles in pancreatic acinar cells. Combinations of cytosolic dextran-bound probes with endoplasmic reticulum (ER) or mitochondrial probes were also used to simultaneously visualize vacuoles and corresponding organelles. We expect that the new technique will also be applicable and useful for studies of vacuole dynamics in other cell types.


Asunto(s)
Dextranos , Endocitosis , Aumento de la Imagen/métodos , Microscopía Confocal/métodos , Páncreas/citología , Vacuolas/ultraestructura , Xantenos , Animales , Medios de Contraste , Ratones
12.
Traffic ; 8(8): 1080-92, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17555535

RESUMEN

ADP-ribosylation factor (ARF) proteins are involved in multiple intracellular vesicular transport pathways. Most studies have focused on the functions of ARF1 or ARF6 and little is known about the remaining ARF isoforms. Although the mammalian ARF proteins share a high degree of sequence identity, recent evidence has indicated that they may control distinct trafficking steps within cells. A unanswered issue is the degree of specificity of ARF family members for different interacting proteins. To investigate potential functional differences between the human ARF proteins, we have examined the localization of all human ARF isoforms and their interactions with two ARF1 binding proteins, neuronal calcium sensor-1 (NCS-1) and phosphatidylinositol-4 kinase-IIIbeta (PI4Kbeta). Use of a fluorescent protein fragment complementation method showed direct interactions between ARFs 1, 3, 5 and 6 with NCS-1 but at different intracellular locations in live HeLa cells. Photobleaching experiments indicated that complementation did not detect dynamic changes in protein interactions over short-time scales. A more specific interaction between ARFs 1/3 and PI4Kbeta was observed. Consistent with these latter findings ARF1 but not ARF5 or 6 enhanced the stimulatory effect of PI4Kbeta on regulated exocytosis, suggesting a specific role for class-I ARFs in the regulation of PI4Kbeta.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Factores de Ribosilacion-ADP/fisiología , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Mapeo de Interacción de Proteínas , Animales , Exocitosis/fisiología , Células HeLa , Humanos , Células PC12 , Isoformas de Proteínas/fisiología , Ratas
13.
Proc Natl Acad Sci U S A ; 104(13): 5674-9, 2007 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-17363470

RESUMEN

The intracellular activation of trypsinogen, which is both pH- and calcium-dependent, is an important early step in the development of acute pancreatitis. The cellular compartment in which trypsinogen activation occurs currently is unknown. We therefore investigated the site of intracellular trypsinogen activation by using an established cellular model of acute pancreatitis: supramaximal stimulation of pancreatic acinar cells with cholecystokinin. We used fluorescent dextrans as fluid phase tracers and observed the cholecystokinin-elicited formation and translocation of large endocytic vacuoles. The fluorescent probe rhodamine 110 bis-(CBZ-L-isoleucyl-L-prolyl-L-arginine amide) dihydrochloride (BZiPAR) was used to detect trypsinogen activation. Fluid phase tracers were colocalized with cleaved BZiPAR, indicating that trypsinogen activation occurred within endocytic vacuoles. The development of BZiPAR fluorescence was inhibited by the trypsin inhibitor benzamidine. Fluorescein dextran and Oregon Green 488 BAPTA-5N were used to measure endosomal pH and calcium, respectively. The pH in endocytic vacuoles was 5.9 +/- 0.1, and the calcium ion concentration was 37 +/- 11 microM. The caged calcium probe o-nitrophenyl EGTA and UV uncaging were used to increase calcium in endocytic vacuoles. This increase of calcium caused by calcium uncaging was followed by recovery to the prestimulated level within approximately 100 s. We propose that the initiation of acute pancreatitis depends on endocytic vacuole formation and trypsinogen activation in this compartment.


Asunto(s)
Endocitosis , Páncreas/citología , Tripsinógeno/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Dextranos/química , Activación Enzimática , Colorantes Fluorescentes/farmacología , Concentración de Iones de Hidrógeno , Ratones , Pancreatitis/metabolismo , Transporte de Proteínas , Tripsina/química , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA