RESUMEN
ABSTRACT: Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.
Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Ratones , Animales , Mieloma Múltiple/metabolismo , Antígenos CD28/metabolismo , Linfocitos T , Antígeno de Maduración de Linfocitos B/metabolismo , Recurrencia Local de Neoplasia/metabolismoRESUMEN
BACKGROUND: Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly. Noninvasive 1H magnetic resonance spectroscopy (MRS) can measure in vitro and in vivo concentration of key metabolites which may potentially serve as biomarkers of response to kinase inhibition. METHODS: We employed mantle cell lymphoma (MCL) cell lines demonstrating markedly diverse sensitivity of inhibition of Bruton's tyrosine kinase (BTK) regarding their growth and studied in-depth effects of the inhibition on various aspects of cell metabolism including metabolite synthesis using metabolomics, glucose and oxidative metabolism by Seahorse XF technology, and concentration of index metabolites lactate, alanine, total choline and taurine by 1H MRS. RESULTS: Effective BTK inhibition profoundly suppressed key cell metabolic pathways, foremost pyrimidine and purine synthesis, the citrate (TCA) cycle, glycolysis, and pyruvate and glutamine/alanine metabolism. It also inhibited glycolysis and amino acid-related oxidative metabolism. Finally, it profoundly and quickly decreased concentration of lactate (a product of mainly glycolysis) and alanine (an indicator of amino acid metabolism) and, less universally total choline both in vitro and in vivo, in the MCL xenotransplant model. The decrease correlated directly with the degree of inhibition of lymphoma cell expansion and tumor growth. CONCLUSIONS: Our results indicate that BTK inhibition exerts a broad and profound suppressive effect on cell metabolism and that the affected index metabolites such as lactate, alanine may serve as early, sensitive, and reliable biomarkers of inhibition in lymphoma patients detectable by noninvasive MRS-based imaging method. This kind of imaging-based detection may also be applicable to other kinase inhibitors, as well as diverse lymphoid and non-lymphoid malignancies.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Linfoma de Células del Manto , Inhibidores de Proteínas Quinasas , Humanos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Animales , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Biomarcadores/metabolismoRESUMEN
Bonded cumomers are sets of isotopomers of 13 C-labeled metabolites containing a particular sequence of contiguously or singly labeled carbon atoms. Only these isotopomers contribute to multiplet structure in the 13 C NMR spectrum. We discuss the application of this technique to the study of quantitative tumor metabolism, bioenergetics, and the Warburg effect. The advantages and sensitivity of bonded cumomer analysis over positional enrichment analysis are discussed. When sensitivity requirements are met, bonded cumomer analysis enables the extraction of fluxes through specific metabolic pathways with higher precision. In conjunction with isotopomer control analysis, we evaluate the sensitivity of experimentally measurable metabolite multiplets to determine the robustness of flux analysis in 13 C spectra of tumors. This review examines the role of glycolytic and tricarboxylic acid cycle metabolism with special emphasis on flux through the pentose phosphate pathway (PPP). The impact of reversibility of the nonoxidative branch of the PPP with various 13 C glucose tracers on fine-structure multiplets is analyzed.
Asunto(s)
Modelos Biológicos , Neoplasias , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolismo Energético , Ciclo del Ácido Cítrico , Glucosa/metabolismo , Isótopos de Carbono/metabolismoRESUMEN
The Nobel Prize Winner (1931) Dr. Otto H. Warburg had established that the primary energy source of the cancer cell is aerobic glycolysis (the Warburg effect). He also postulated the hypothesis about "the prime cause of cancer", which is a matter of debate nowadays. Contrary to the hypothesis, his discovery was recognized entirely. However, the discovery had almost vanished in the heat of battle about the hypothesis. The prime cause of cancer is essential for the prevention and diagnosis, yet the effects that influence tumor growth are more important for cancer treatment. Due to the Warburg effect, a large amount of data has been accumulated on biochemical changes in the cell and the organism as a whole. Due to the Warburg effect, the recovery of normal biochemistry and oxygen respiration and the restoration of the work of mitochondria of cancer cells can inhibit tumor growth and lead to remission. Here, we review the current knowledge on the inhibition of abnormal glycolysis, neutralization of its consequences, and normalization of biochemical parameters, as well as recovery of oxygen respiration of a cancer cell and mitochondrial function from the point of view of classical biochemistry and organic chemistry.
Asunto(s)
Química Orgánica , Neoplasias , Humanos , Glucólisis/fisiología , Metabolismo Energético , Neoplasias/terapia , Neoplasias/patología , OxígenoRESUMEN
Cells receive growth and survival stimuli through their attachment to an extracellular matrix (ECM). Overcoming the addiction to ECM-induced signals is required for anchorage-independent growth, a property of most malignant cells. Detachment from ECM is associated with enhanced production of reactive oxygen species (ROS) owing to altered glucose metabolism. Here we identify an unconventional pathway that supports redox homeostasis and growth during adaptation to anchorage independence. We observed that detachment from monolayer culture and growth as anchorage-independent tumour spheroids was accompanied by changes in both glucose and glutamine metabolism. Specifically, oxidation of both nutrients was suppressed in spheroids, whereas reductive formation of citrate from glutamine was enhanced. Reductive glutamine metabolism was highly dependent on cytosolic isocitrate dehydrogenase-1 (IDH1), because the activity was suppressed in cells homozygous null for IDH1 or treated with an IDH1 inhibitor. This activity occurred in absence of hypoxia, a well-known inducer of reductive metabolism. Rather, IDH1 mitigated mitochondrial ROS in spheroids, and suppressing IDH1 reduced spheroid growth through a mechanism requiring mitochondrial ROS. Isotope tracing revealed that in spheroids, isocitrate/citrate produced reductively in the cytosol could enter the mitochondria and participate in oxidative metabolism, including oxidation by IDH2. This generates NADPH in the mitochondria, enabling cells to mitigate mitochondrial ROS and maximize growth. Neither IDH1 nor IDH2 was necessary for monolayer growth, but deleting either one enhanced mitochondrial ROS and reduced spheroid size, as did deletion of the mitochondrial citrate transporter protein. Together, the data indicate that adaptation to anchorage independence requires a fundamental change in citrate metabolism, initiated by IDH1-dependent reductive carboxylation and culminating in suppression of mitochondrial ROS.
Asunto(s)
Ácido Cítrico/metabolismo , Homeostasis , Isocitrato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo , Adhesión Celular , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Inhibición de Contacto , Citosol/enzimología , Citosol/metabolismo , Matriz Extracelular/metabolismo , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Humanos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/deficiencia , Isocitrato Deshidrogenasa/genética , Isocitratos/metabolismo , NADP/biosíntesis , Neoplasias/enzimología , Oxidación-Reducción , Estrés Oxidativo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologíaRESUMEN
Carbon-13 NMR spectroscopy (13 C MRS) offers the unique capability to measure brain metabolic rates in vivo. Hyperpolarized 13 C reduces the time required to assess brain metabolism from hours to minutes when compared with conventional 13 C MRS. This study investigates metabolism of hyperpolarized [1-13 C]pyruvate and [2-13 C]pyruvate in the rat brain in vivo under various anesthetics: pentobarbital, isoflurane, α-chloralose, and morphine. The apparent metabolic rate from pyruvate to lactate modeled using time courses obtained after injection of hyperpolarized [1-13 C]pyruvate was significantly greater for isoflurane than for all other anesthetic conditions, and significantly greater for morphine than for α-chloralose. The apparent metabolic rate from pyruvate to bicarbonate was significantly greater for morphine than for all other anesthetic conditions, and significantly lower for pentobarbital than for α-chloralose. Results show that relative TCA cycle rates determined from hyperpolarized 13 C data are consistent with rates previously measured using conventional 13 C MRS under similar anesthetic conditions, and that using morphine for sedation greatly improves detection of downstream metabolic products compared with other anesthetics.
Asunto(s)
Anestesia , Encéfalo/metabolismo , Isótopos de Carbono/química , Ácido Pirúvico/metabolismo , Animales , Cinética , Masculino , Ratas Sprague-DawleyRESUMEN
A network model for the determination of tumor metabolic fluxes from (13)C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-(13)C2]glucose under normoxic conditions at 37 °C and monitored by (13)C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was â¼ 50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was â¼ 6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism.
Asunto(s)
Melanoma/metabolismo , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular Tumoral , Ciclo del Ácido Cítrico , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Modelos Teóricos , Mutación Missense , Oxígeno/metabolismo , Proteínas Proto-Oncogénicas B-raf/genéticaRESUMEN
The antitumor agent lonidamine (LND; 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid) is known to interfere with energy-yielding processes in cancer cells. However, the effect of LND on central energy metabolism has never been fully characterized. In this study, we report that a significant amount of succinate is accumulated in LND-treated cells. LND inhibits the formation of fumarate and malate and suppresses succinate-induced respiration of isolated mitochondria. Utilizing biochemical assays, we determined that LND inhibits the succinate-ubiquinone reductase activity of respiratory complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through complex II, which reduced the viability of the DB-1 melanoma cell line. The ability of LND to promote cell death was potentiated by its suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. Using stable isotope tracers in combination with isotopologue analysis, we showed that LND increased glutaminolysis but decreased reductive carboxylation of glutamine-derived α-ketoglutarate. Our findings on the previously uncharacterized effects of LND may provide potential combinational therapeutic approaches for targeting cancer metabolism.
Asunto(s)
Antineoplásicos/farmacología , Complejo II de Transporte de Electrones/antagonistas & inhibidores , Indazoles/farmacología , Mitocondrias/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Diacetil/análogos & derivados , Diacetil/farmacología , Complejo II de Transporte de Electrones/metabolismo , Fumaratos/metabolismo , Glutamina/metabolismo , Glutatión/metabolismo , Humanos , Malatos/metabolismo , Melanoma/metabolismo , Melanoma/patología , Análisis de Flujos Metabólicos , Mitocondrias/efectos de los fármacos , Modelos Biológicos , NADP/metabolismo , Naftalenos/farmacología , Oxidación-Reducción/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ácido Succínico/metabolismoRESUMEN
Lonidamine (LND) was initially introduced as an antispermatogenic agent. It was later found to have anticancer activity sensitizing tumors to chemo-, radio-, and photodynamic-therapy and hyperthermia. Although the mechanism of action remained unclear, LND treatment has been known to target metabolic pathways in cancer cells. It has been reported to alter the bioenergetics of tumor cells by inhibiting glycolysis and mitochondrial respiration, while indirect evidence suggested that it also inhibited l-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). Recent studies have demonstrated that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki 2.5µM) and cooperatively inhibits l-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevis oocytes with K0.5 and Hill coefficient values of 36-40µM and 1.65-1.85, respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50~7µM) than other substrates including glutamate (IC50~20µM). LND inhibits the succinate-ubiquinone reductase activity of respiratory Complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through Complex II and has been reported to promote cell death by suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated l-lactic acid efflux, Complex II and glutamine/glutamate oxidation.
Asunto(s)
Antineoplásicos/farmacología , Indazoles/farmacología , Animales , Hexoquinasa/antagonistas & inhibidores , Humanos , Concentración de Iones de Hidrógeno , Indazoles/toxicidad , Proteínas de Transporte de Membrana/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismoRESUMEN
The Warburg effect, or aerobic glycolysis, is marked by the increased metabolism of glucose to lactate in the presence of oxygen. Despite its widespread prevalence in physiology and cancer biology, the causes and consequences remain incompletely understood. Here, we show that a simple balance of interacting fluxes in glycolysis creates constraints that impose the necessary conditions for glycolytic flux to generate lactate as opposed to entering into the mitochondria. These conditions are determined by cellular redox and energy demands. By analyzing the constraints and sampling the feasible region of the model, we further study how cell proliferation rate and mitochondria-associated NADH oxidizing and ATP producing fluxes are interlinked. Together this analysis illustrates the simplicity of the origins of the Warburg effect by identifying the flux distributions that are necessary for its instantiation.
Asunto(s)
Glucosa/metabolismo , Glucólisis/fisiología , Ácido Láctico/metabolismo , Modelos Moleculares , Oxígeno/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Algoritmos , Neoplasias de la Mama/metabolismo , Carcinoma/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Glucosa/química , Humanos , Ácido Láctico/química , Mitocondrias/química , Mitocondrias/metabolismo , NAD/química , NAD/metabolismo , Oxidación-Reducción , Oxígeno/químicaRESUMEN
Most current brain metabolic models are not capable of taking into account the dynamic isotopomer information available from fine structure multiplets in (13)C spectra, due to the difficulty of implementing such models. Here we present a new approach that allows automatic implementation of multi-compartment metabolic models capable of fitting any number of (13)C isotopomer curves in the brain. The new automated approach also makes it possible to quickly modify and test new models to best describe the experimental data. We demonstrate the power of the new approach by testing the effect of adding separate pyruvate pools in astrocytes and neurons, and adding a vesicular neuronal glutamate pool. Including both changes reduced the global fit residual by half and pointed to dilution of label prior to entry into the astrocytic TCA cycle as the main source of glutamine dilution. The glutamate-glutamine cycle rate was particularly sensitive to changes in the model.
Asunto(s)
Química Encefálica/fisiología , Espectroscopía de Resonancia Magnética/métodos , Algoritmos , Animales , Automatización , Simulación por Computador , Humanos , Modelos Biológicos , Modelos Teóricos , Neuroglía/metabolismo , Neuronas/metabolismoRESUMEN
Cell surface molecules transiently upregulated on activated T cells can play a counter-regulatory role by inhibiting T cell function. Deletion or blockade of such immune checkpoint receptors has been investigated to improve the function of engineered immune effector cells. CD38 is upregulated on activated T cells, and although there have been studies showing that CD38 can play an inhibitory role in T cells, how it does so has not fully been elucidated. In comparison with molecules such as PD1, CTLA4, LAG3, and TIM3, we found that CD38 displays more sustained and intense expression following acute activation. After deleting CD38 from human chimeric antigen receptor (CAR) T cells, we showed relative resistance to exhaustion in vitro and improved anti-tumor function in vivo. CD38 is a multifunctional ectoenzyme with hydrolase and cyclase activities. Reintroduction of CD38 mutants into T cells lacking CD38 provided further evidence supporting the understanding that CD38 plays a crucial role in producing the immunosuppressive metabolite adenosine and utilizing nicotinamide adenine dinucleotide (NAD) in human T cells. Taken together, these results highlight a role for CD38 as an immunometabolic checkpoint in T cells and lead us to propose CD38 deletion as an additional avenue for boosting CAR T cell function.
RESUMEN
Activated T cells undergo a metabolic shift to aerobic glycolysis to support the energetic demands of proliferation, differentiation, and cytolytic function. Transmembrane glucose flux is facilitated by glucose transporters (GLUT) that play a vital role in T cell metabolic reprogramming and anti-tumour function. GLUT isoforms are regulated at the level of expression and subcellular distribution. GLUTs also display preferential selectivity for carbohydrate macronutrients including glucose, galactose, and fructose. GLUT5, which selectively transports fructose over glucose, has never been explored as a genetic engineering strategy to enhance CAR-T cells in fructose-rich tumour environments. Fructose levels are significantly elevated in the bone marrow and the plasma of acute myeloid leukaemia (AML) patients. Here, we demonstrate that the expression of wild-type GLUT5 restores T cell metabolic fitness in glucose-free, high fructose conditions. We find that fructose supports maximal glycolytic capacity and ATP replenishment rates in GLUT5-expressing T cells. Using steady state tracer technology, we show that 13C6 fructose supports glycolytic reprogramming and TCA anaplerosis in CAR-T cells undergoing log phase expansion. In cytotoxicity assays, GLUT5 rescues T cell cytolytic function in glucose-free medium. The fructose/GLUT5 metabolic axis also supports maximal migratory velocity, which provides mechanistic insight into why GLUT5-expressing CAR-Ts have superior effector function as they undergo "hit-and-run" serial killing. These findings translate to superior anti-tumour function in a xenograft model of AML. In fact, we found that GLUT5 enhances CAR-T cell anti-tumour function in vivo without any need for fructose intervention. Accordingly, we hypothesize that GLUT5 is sufficient to enhance CAR-T resilience by increasing the cells' competitiveness for glucose at physiologic metabolite levels. Our findings have immediate translational relevance by providing the first evidence that GLUT5 confers a competitive edge in a fructose-enriched milieu, and is a novel approach to overcome glucose depletion in hostile tumour microenvironments (TMEs).
RESUMEN
ABSTRACT: Lymphodepletion (LD) is an integral component of chimeric antigen receptor T-cell (CART) immunotherapies. In this study, we compared the safety and efficacy of bendamustine (Benda) to standard fludarabine/cyclophosphamide (Flu/Cy) LD before CD19-directed, CD28-costimulated CART axicabtagene ciloleucel (axi-cel) for patients with large B-cell lymphoma (LBCL) and follicular lymphoma (FL). We analyzed 59 patients diagnosed with LBCL (n = 48) and FL (n = 11) consecutively treated with axi-cel at the University of Pennsylvania. We also analyzed serum samples for cytokine levels and metabolomic changes before and after LD. Flu/Cy and Benda demonstrated similar efficacy, with complete remission rates of 51.4% and 50.0% (P = .981), respectively, and similar progression-free and overall survivals. Any-grade cytokine-release syndrome occurred in 91.9% of patients receiving Flu/Cy vs 72.7% of patients receiving Benda (P = .048); any-grade neurotoxicity after Flu/Cy occurred in 45.9% of patients and after Benda in 18.2% of patients (P = .031). In addition, Flu/Cy was associated with a higher incidence of grade ≥3 neutropenia (100% vs 54.5%; P < .001), infections (78.4% vs 27.3%; P < .001), and neutropenic fever (78.4% vs 13.6%; P < .001). These results were confirmed both in patients with LBCL and those with FL. Mechanistically, patients with Flu/Cy had a greater increase in inflammatory cytokines associated with neurotoxicity and reduced levels of metabolites critical for redox balance and biosynthesis. This study suggests that Benda LD may be a safe alternative to Flu/Cy for CD28-based CART CD19-directed immunotherapy with similar efficacy and reduced toxicities. Benda is associated with reduced levels of inflammatory cytokines and increased anabolic metabolites.
Asunto(s)
Productos Biológicos , Citocinas , Linfoma Folicular , Humanos , Clorhidrato de Bendamustina/efectos adversos , Antígenos CD28 , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , CiclofosfamidaRESUMEN
Metabolic modeling of dynamic (13)C labeling curves during infusion of (13)C-labeled substrates allows quantitative measurements of metabolic rates in vivo. However metabolic modeling studies performed in the brain to date have only modeled time courses of total isotopic enrichment at individual carbon positions (positional enrichments), not taking advantage of the additional dynamic (13)C isotopomer information available from fine-structure multiplets in (13)C spectra. Here we introduce a new (13)C metabolic modeling approach using the concept of bonded cumulative isotopomers, or bonded cumomers. The direct relationship between bonded cumomers and (13)C multiplets enables fitting of the dynamic multiplet data. The potential of this new approach is demonstrated using Monte-Carlo simulations with a brain two-compartment neuronal-glial model. The precision of positional and cumomer approaches are compared for two different metabolic models (with and without glutamine dilution) and for different infusion protocols ([1,6-(13)C(2)]glucose, [1,2-(13)C(2)]acetate, and double infusion [1,6-(13)C(2)]glucose + [1,2-(13)C(2)]acetate). In all cases, the bonded cumomer approach gives better precision than the positional approach. In addition, of the three different infusion protocols considered here, the double infusion protocol combined with dynamic bonded cumomer modeling appears the most robust for precise determination of all fluxes in the model. The concepts and simulations introduced in the present study set the foundation for taking full advantage of the available dynamic (13)C multiplet data in metabolic modeling.
Asunto(s)
Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Modelos Biológicos , Neuroglía/metabolismo , Neuronas/metabolismo , Encéfalo/citología , Isótopos de Carbono , Neuroglía/citología , Neuronas/citologíaRESUMEN
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, K(M)(t) and V(max)(t), in humans have so far been obtained by measuring steady-state brain glucose levels by proton ((1)H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMR(glc)) obtained from other tracer studies, such as (13)C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state (1)H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at â¼17 mmol/l for â¼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMR(glc), this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain.
Asunto(s)
Encéfalo/metabolismo , Glucosa/metabolismo , Glucosa/farmacocinética , Adolescente , Adulto , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Química Encefálica/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Protones , Reproducibilidad de los Resultados , Pesos y Medidas , Adulto JovenRESUMEN
Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.
Asunto(s)
Acetatos/metabolismo , Química Encefálica/fisiología , Acetatos/administración & dosificación , Acetatos/sangre , Algoritmos , Aminoácidos/metabolismo , Animales , Astrocitos/metabolismo , Transporte Biológico Activo/fisiología , Biotransformación , Ciclo del Ácido Cítrico/fisiología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Infusiones Intravenosas , Cinética , Espectroscopía de Resonancia Magnética , Masculino , Piruvato Carboxilasa/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Current methods to evaluate effects of kinase inhibitors in cancer are suboptimal. Analysis of changes in cancer metabolism in response to the inhibitors creates an opportunity for better understanding of the interplay between cell signaling and metabolism and, from the translational perspective, potential early evaluation of response to the inhibitors as well as treatment optimization. We performed genomic, metabolomic, and fluxomic analyses to evaluate the mechanism of action of the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib (IBR) in mantle cell lymphoma (MCL) cells. Our comprehensive analysis of the data generated by these diverse technologies revealed that IBR profoundly affected key metabolic pathways in IBR-sensitive cells including glycolysis, pentose phosphate pathway, TCA cycle, and glutaminolysis while having much less effects on IBR-poorly responsive cells. Changes in 1H magnetic resonance spectroscopy (MRS)-detectable lactate and alanine concentrations emerged as promising biomarkers of response and resistance to IBR as demonstrated from experiments on various MCL cell lines. The metabolic network analysis on the 13C MRS and 13C LC/MS experimental data provided quantitative estimates of various intracellular fluxes and energy contributions. Glutaminolysis contributed over 50% of mitochondrial ATP production. Administration of the glutaminase inhibitor CB-839 induced growth suppression of the IBR-poorly responsive cells. IMPLICATIONS: Our study demonstrates application of the advanced metabolomic/fluxomic techniques for comprehensive, precise, and prompt evaluations of the effects of kinase inhibition in MCL cells and has strong translational implications by potentially permitting early evaluation of cancer patient response versus resistance to kinase inhibitors and on design of novel therapies for overcoming the resistance.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/metabolismo , Redes y Vías Metabólicas/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/metabolismo , Adenina/análogos & derivados , Bencenoacetamidas/farmacología , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Glutaminasa/metabolismo , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Piperidinas , Pirazoles/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Tiadiazoles/farmacologíaRESUMEN
Targeted cancer therapies that use genetics are successful, but principles for selectively targeting tumor metabolism that is also dependent on the environment remain unknown. We now show that differences in rate-controlling enzymes during the Warburg effect (WE), the most prominent hallmark of cancer cell metabolism, can be used to predict a response to targeting glucose metabolism. We establish a natural product, koningic acid (KA), to be a selective inhibitor of GAPDH, an enzyme we characterize to have differential control properties over metabolism during the WE. With machine learning and integrated pharmacogenomics and metabolomics, we demonstrate that KA efficacy is not determined by the status of individual genes, but by the quantitative extent of the WE, leading to a therapeutic window in vivo. Thus, the basis of targeting the WE can be encoded by molecular principles that extend beyond the status of individual genes.