Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791308

RESUMEN

Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid ß-oxidation, autophagy, and virulence.


Asunto(s)
Fusarium , Hemo , Fusarium/efectos de los fármacos , Fusarium/metabolismo , Fusarium/crecimiento & desarrollo , Fusarium/genética , Hemo/biosíntesis , Hemo/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estrés Fisiológico , Estrés Oxidativo/efectos de los fármacos , Triazoles/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Fungicidas Industriales/farmacología , Ferroquelatasa/metabolismo , Ferroquelatasa/genética
2.
Pestic Biochem Physiol ; 194: 105506, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532325

RESUMEN

Fusarium head blight caused by Fusarium asiaticum is an important cereal crop disease, and the trichothecene mycotoxins produced by F. asiaticum can contaminate wheat grain, which is very harmful to humans and animals. To effectively control FHB in large areas, the application of fungicides is the major strategy; however, the application of different types of fungicides has varying influences on the accumulation of trichothecene mycotoxins in F. asiaticum. In this study, phenamacril inhibited trichothecene mycotoxin accumulation in F. asiaticum; however, carbendazim (N-1H-benzimidazol-2-yl-carbamic acid, methyl ester) induced trichothecene mycotoxin accumulation. Additionally, phenamacril led to a lower level of reactive oxygen species (ROS) by inducing gene expression of the catalase and superoxide dismutase (SOD) pathways in F. asiaticum, whereas carbendazim stimulated ROS accumulation by inhibiting gene expression of the catalase and SOD pathways. Based on these results, we conclude that phenamacril and carbendazim regulate trichothecene mycotoxin synthesis by affecting ROS levels in F. asiaticum.


Asunto(s)
Fungicidas Industriales , Fusarium , Micotoxinas , Tricotecenos , Humanos , Catalasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fungicidas Industriales/farmacología , Fungicidas Industriales/metabolismo , Tricotecenos/farmacología , Tricotecenos/metabolismo , Micotoxinas/metabolismo , Micotoxinas/farmacología , Enfermedades de las Plantas
3.
Appl Environ Microbiol ; 87(20): e0096721, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34378994

RESUMEN

The plant pathogen Fusarium graminearum contains two α-tubulin isotypes (α1 and α2) and two ß-tubulin isotypes (ß1 and ß2). The functional roles of these tubulins in microtubule assembly are not clear. Previous studies reported that α1- and ß2-tubulin deletion mutants showed severe growth defects and hypersensitivity to carbendazim, which have not been well explained. Here, we investigated the interaction between α- and ß-tubulin of F. graminearum. Colocalization experiments demonstrated that ß1- and ß2-tubulin are colocalized. Coimmunoprecipitation experiments suggested that ß1-tubulin binds to both α1- and α2-tubulin and that ß2-tubulin can also bind to α1- or α2-tubulin. Interestingly, deletion of α1-tubulin increased the interaction between ß2-tubulin and α2-tubulin. Microtubule observation assays showed that deletion of α1-tubulin completely disrupted ß1-tubulin-containing microtubules and significantly decreased ß2-tubulin-containing microtubules. Deletion of α2-, ß1-, or ß2-tubulin had no obvious effect on the microtubule cytoskeleton. However, microtubules in α1- and ß2-tubulin deletion mutants were easily depolymerized in the presence of carbendazim. The sexual reproduction assay indicates that α1- and ß1-tubulin deletion mutants could not produce asci and ascospores. These results implied that α1-tubulin may be essential for the microtubule cytoskeleton. However, our Δα1-2×α2 mutant (α1-tubulin deletion mutant containing two copies of α2-tubulin) exhibited normal microtubule network, growth, and sexual reproduction. Interestingly, the Δα1-2×α2 mutant was still hypersensitive to carbendazim. In addition, both ß1-tubulin and ß2-tubulin were found to bind the mitochondrial outer membrane voltage-dependent anion channel (VDAC), indicating that they could regulate the function of VDAC. IMPORTANCE In this study, we found that F. graminearum contains four different α-/ß-tubulin heterodimers (α1-/ß1-, α1-/ß2-, α2-/ß1-, and α2-/ß2-tubulin heterodimers), and they assemble together into a single microtubule. Moreover, α1- and α2-tubulins are functionally interchangeable in microtubule assembly, vegetative growth, and sexual reproduction. These results provide more insights into the functional roles of different tubulins of F. graminearum, which could be helpful for purification of tubulin heterodimers and development of new tubulin-binding agents.


Asunto(s)
Fusarium/fisiología , Microtúbulos/fisiología , Tubulina (Proteína)/fisiología , Proteínas Fúngicas/fisiología , Fusarium/genética , Fusarium/crecimiento & desarrollo , Canales Aniónicos Dependientes del Voltaje/fisiología
4.
J Integr Plant Biol ; 63(2): 365-377, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32725938

RESUMEN

Filamentous fungal pathogens secrete effectors that modulate host immunity and facilitate infection. Fusarium graminearum is an important plant pathogen responsible for various devastating diseases. However, little is known about the function of effector proteins secreted by F. graminearum. Herein, we identified several effector candidates in the F. graminearum secretome. Among them, the secreted ribonuclease Fg12 was highly upregulated during the early stages of F. graminearum infection in soybean; its deletion compromised the virulence of F. graminearum. Transient expression of Fg12 in Nicotiana benthamiana induced cell death in a light-dependent manner. Fg12 possessed ribonuclease (RNase) activity, degrading total RNA. The enzymatic activity of Fg12 was required for its cell death-promoting effects. Importantly, the ability of Fg12 to induce cell death was independent of BAK1/SOBIR1, and treatment of soybean with recombinant Fg12 protein induced resistance to various pathogens, including F. graminearum and Phytophthora sojae. Overall, our results provide evidence that RNase effectors not only contribute to pathogen virulence but also induce plant cell death.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/patogenicidad , Células Vegetales/microbiología , Ribonucleasas/metabolismo , Muerte Celular , Resistencia a la Enfermedad , Fusarium/clasificación , Filogenia , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Señales de Clasificación de Proteína , Proteómica , ARN de Planta/metabolismo , Glycine max/microbiología , Nicotiana/citología , Regulación hacia Arriba , Virulencia
5.
Curr Genet ; 65(2): 591-605, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30474697

RESUMEN

Lactate dehydrogenase (LDH) widely exists in organisms, which catalyzes the interconversion of pyruvate into lactate with concomitant interconversion of NADH and NAD+. In this study, two L-type lactate dehydrogenase genes FgLDHL1 and FgLDHL2 were characterized in an ascomycete fungus Fusarium graminearum, a causal agent of wheat head blight. Both the single-gene deletion mutants of FgLDHL1 or FgLDHL2 exhibited phenotypic defects in vegetative growth, sporulation, spore germination, L-lactate biosynthesis and activity. Additionally, the two L-lactate dehydrogenases were involved in the utilization of carbon sources and maintenance of redox homeostasis during spore germination. Pathogenicity assays showed that ΔFgLDHL1 exhibits reduced virulence on wheat spikelets and on corn stigmas, suggesting that it was indirectly correlated with a reduced level of deoxynivalenol accumulation. These results indicate that FgLDHL1 and FgLDHL2 play multiple roles in the developmental processes and pathogenesis in F. graminearum, and help understand the functional diversity of D-/L-lactate dehydrogenase in phytopathogenic fungi.


Asunto(s)
Fusarium/fisiología , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Ambiente , Fusarium/patogenicidad , Genes Fúngicos , Prueba de Complementación Genética , Hifa , L-Lactato Deshidrogenasa/química , Fenotipo , Filogenia , Enfermedades de las Plantas/microbiología , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Eliminación de Secuencia , Esporas Fúngicas , Estrés Fisiológico
6.
Curr Genet ; 64(4): 919-930, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29417220

RESUMEN

In eukaryotes, the ubiquitin-like (UBL) protein-activating enzymes play a crucial role in autophagy process, however, it is poorly characterized in filamentous fungi. Here, we investigated the functions of two UBL activating enzymes, BcAtg3 (E2) and BcAtg7 (E1) in the plant pathogenic fungus Botrytis cinerea. The physical interaction of BcAtg3 with BcAtg7 was demonstrated by yeast two-hybrid system. Subcellular localization assays showed that BcAtg3 diffused in cytoplasm, and BcAtg7 localized in cytoplasm as pre-autophagosomal structures (PAS). Target gene deletion experiments revealed that both BcATG3 and BcATG7 are essential for autophagy pathway. Notably, the single deletion mutant of BcATG3 and BcATG7 displayed similar biological phenotypes, including the defects in mycelial growth, conidiation and sclerotial formation. Infection tests showed that both BcATG3 and BcATG7 were required for full virulence of B. cinerea. All of these defective phenotypes were rescued by gene complementation. These results indicate that BcATG3 and BcATG7 are necessary for autophagy to regulate fungal development and pathogenesis in B. cinerea.


Asunto(s)
Autofagia/genética , Botrytis/genética , Hongos/genética , Enzimas Activadoras de Ubiquitina/genética , Botrytis/patogenicidad , Hongos/patogenicidad , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Estrés Oxidativo/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Saccharomyces cerevisiae/genética , Esporas Fúngicas/genética , Esporas Fúngicas/patogenicidad , Estrés Fisiológico/genética
7.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29572212

RESUMEN

Autophagy is a conserved degradation process that maintains intracellular homeostasis to ensure normal cell differentiation and development in eukaryotes. ATG8 is one of the key molecular components of the autophagy pathway. In this study, we identified and characterized BcATG8, a homologue of Saccharomyces cerevisiae (yeast) ATG8 in the necrotrophic plant pathogen Botrytis cinerea Yeast complementation experiments demonstrated that BcATG8 can functionally complement the defects of the yeast ATG8 null mutant. Direct physical interaction between BcAtg8 and BcAtg4 was detected in the yeast two-hybrid system. Subcellular localization assays showed that green fluorescent protein-tagged BcAtg8 (GFP-BcAtg8) localized in the cytoplasm as preautophagosomal structures (PAS) under general conditions but mainly accumulated in the lumen of vacuoles in the case of autophagy induction. Deletion of BcATG8 (ΔBcAtg8 mutant) blocked autophagy and significantly impaired mycelial growth, conidiation, sclerotial formation, and virulence. In addition, the conidia of the ΔBcAtg8 mutant contained fewer lipid droplets (LDs), and quantitative real-time PCR (qRT-PCR) assays revealed that the basal expression levels of the LD metabolism-related genes in the mutant were significantly different from those in the wild-type (WT) strain. All of these phenotypic defects were restored by gene complementation. These results indicate that BcATG8 is essential for autophagy to regulate fungal development, pathogenesis, and lipid metabolism in B. cinereaIMPORTANCE The gray mold fungus Botrytis cinerea is an economically important plant pathogen with a broad host range. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. Exploring the fundamental biology of B. cinerea can provide the theoretical basis for sustainable and long-term disease management. Autophagy is an intracellular process for degradation and recycling of cytosolic materials in eukaryotes and is now known to be vital for fungal life. Here, we report studies of the biological role of the autophagy gene BcATG8 in B. cinerea The results suggest that autophagy plays a crucial role in vegetative differentiation and virulence of B. cinerea.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Autofagia/genética , Botrytis/genética , Botrytis/patogenicidad , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Prueba de Complementación Genética , Mutación con Pérdida de Función , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
8.
BMC Microbiol ; 18(1): 128, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30290767

RESUMEN

BACKGROUND: Dihydrodipicolinate synthase (DHDPS) is an allosteric enzyme, which catalyzes the first unique step of lysine biosynthesis in prokaryotes, higher plants and some fungi. To date, the biological roles of DHDPS in filamentous fungi are poorly understood. RESULTS: In this study, on the basis of comparative genome resequencing, a DHDPS gene was found to be specific in Fusarium asiaticum, named FaDHDPS1, which showed high amino acid identity to that of entomopathogenic fungus. Subcellular localization of the FaDHDPS1-GFP fusion protein was mainly concentrated in the cytoplasm of conidia and dispersed in the cytoplasm during conidial germination. To reveal the biological functions, both deletion and complementation mutants of FaDHDPS1 were generated. The results showed that the FaDHDPS1 deletion mutant was defective in conidiation, virulence and DON biosynthesis. In addition, deletion of FaDHDPS1 resulted in tolerance to sodium pyruvate, lysine, low temperature and Congo red. CONCLUSION: Results of this study indicate that FaDHDPS1 plays an important role in the regulation of vegetative differentiation, pathogenesis and adaption to multiple stresses in F. asiaticum.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Fusarium/crecimiento & desarrollo , Hidroliasas/metabolismo , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidad , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Hidroliasas/química , Hidroliasas/genética , Hifa/enzimología , Hifa/genética , Hifa/crecimiento & desarrollo , Hifa/patogenicidad , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Alineación de Secuencia , Esporas Fúngicas/enzimología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/patogenicidad , Tricotecenos/biosíntesis , Triticum/microbiología , Virulencia
9.
J Agric Food Chem ; 71(34): 12807-12818, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37585613

RESUMEN

Fusarium graminearum is the main causal agent of Fusarium head blight (FHB), a destructive disease in cereal crops worldwide. Resistance to fludioxonil has been reported in F. graminearum in the field, but its underlying mechanisms remain elusive. In this study, 152 fludioxonil-resistant (FR) mutants of F. graminearum were obtained by selection in vitro. The FR strains exhibited dramatically impaired fitness, but only 7 of the 13 analyzed strains possessed mutations in genes previously reported to underlie fludioxonil resistance. Comparison between the FR-132 strain and its parental strain PH-1 using whole genome sequencing revealed no mutations between them, but transcriptome analysis, after the strains were treated with 0.5 µg/mL fludioxonil, revealed 2778 differently expressed genes (DEGs) mapped to 96 KEGG pathways. Investigation of DEGs in the MAPK pathway showed that overexpression of the tyrosine protein phosphatase FgPtp3, but not FgPtp2, enhanced fludioxonil resistance. Further analysis found that FgPtp3 interacted directly with FgHog1 to regulate the phosphorylation of Hog1, and overexpressed FgPtp3 in PH-1 could significantly suppress the phosphorylation of FgHog1 and hinder signal transmission of the HOG-MAPK pathway. Overall, FgPtp3 plays a significant role in regulating fludioxonil resistance in F. graminearum.


Asunto(s)
Fusarium , Fosforilación , Fusarium/metabolismo , Perfilación de la Expresión Génica , Enfermedades de las Plantas
10.
J Fungi (Basel) ; 8(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36422010

RESUMEN

Smi1 is a protein required for cell cycle progression, morphogenesis, stress response and life span of Saccharomyces cerevisiae. FaSmi1 was identified as a Smi1 homolog in a wheat scab pathogenic fungus Fusarium asiaticum strain 2021. The deletion of FaSmi1 leads to defects in mycelial growth, asexual reproduction, and virulence. The FaSmi1 deletion mutant also exhibited increased sensitivity to osmotic stresses generated by NaCl and KCl, but increased tolerance to oxidative stresses and cell wall integrity inhibitors. All of these defects were restored by genetic complementation of the mutant with the whole parental FaSmi1 gene. Interestingly, the antioxidant system-associated genes exhibit a lower expression level and the mycotoxins' DON content was decreased in the FaSmi1 deletion mutant compared with the parental strain 2021. These results indicate that FaSmi1 plays a critical role in the vegetative development, asexual reproduction, DON production and virulence of F. asiaticum.

11.
J Agric Food Chem ; 69(34): 9735-9742, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34427095

RESUMEN

Cyproconazole (CPZ), a representative chiral triazole fungicide, is widely used to control Fusarium head blight (FHB). In this study, the stereoselective efficiency of CPZ was investigated in vitro and in planta. Consistent results were observed between the in vitro bioassay and the in planta visual disease rating, with the control efficacy ordered RS-CPZ > RR-CPZ > SR-CPZ > SS-CPZ. Unexpectedly, the in planta deoxynivalenol level was in the order RR-CPZ > RS-CPZ > SS-CPZ > SR-CPZ, while RS-CPZ inhibited the deoxynivalenol production and ergosterol biosynthesis in Fusarium graminearum. We further investigated that the Tri genes were upregulated in Fusarium graminearum of the RS-CPZ group, and SR-CPZ preferentially degraded in wheat. An extra action mode of CPZ was inferred to stimulate the production of deoxynivalenol. These findings revealed the stereoselective efficiency of CPZ stereoisomers against FHB and provided new insights into the mechanism of action of triazole fungicides against FHB and deoxynivalenol.


Asunto(s)
Fusarium , Enfermedades de las Plantas , Estereoisomerismo , Triazoles/farmacología , Tricotecenos
12.
Virulence ; 12(1): 2171-2185, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34424830

RESUMEN

The S-adenosyl-L-homocysteine hydrolase (Sah1) plays a crucial role in methylation and lipid metabolism in yeast and mammals, yet its function remains elusive in filamentous fungi. In this study, we characterized Sah1 in the phytopathogenic fungus F. graminearum by generating knockout and knockout-complemented strains of FgSAH1. We found that the FgSah1-GFP fusion protein was localized to the cytoplasm, and that deletion of FgSAH1 resulted in defects in vegetative growth, asexual and sexual reproduction, stress responses, virulence, lipid metabolism, and tolerance against fungicides. Moreover, the accumulations of S-adenosyl-L-homocysteine (AdoHcy) and S-adenosyl-L-methionine (AdoMet) (the methyl group donor in most methyl transfer reactions) in ΔFgSah1 were seven- and ninefold higher than those in the wild-type strain, respectively. All of these defective phenotypes in ΔFgSah1 mutants were rescued by target gene complementation. Taken together, these results demonstrate that FgSah1 plays essential roles in methylation metabolism, fungal development, full virulence, multiple stress responses, lipid metabolism, and fungicide sensitivity in F. graminearum. To our knowledge, this is the first report on the systematic functional characterization of Sah1 in F. graminearum.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium , Fusarium/enzimología , Fusarium/patogenicidad , Regulación Fúngica de la Expresión Génica , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo , Virulencia
13.
Pest Manag Sci ; 76(12): 4093-4103, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32569396

RESUMEN

BACKGROUND: Grape anthracnose caused by the ascomycete fungus Colletotrichum gloeosporioides has been widely controlled by demethylation inhibitors (DMIs) for decades in China. The resistance status and mechanism of C. gloeosporioides against DMIs is not well understood. RESULTS: All difenoconazole-resistant (DfnR ) isolates from vineyards exhibited decreased fitness. Positive cross-resistance was detected between DMI triazoles. Sequence alignment results from the DfnR and DfnS isolates revealed that multiple mutations are distributed at CgCYP51A, concomitant with mutations at CgCYP51B. The half maximal effective concentration (EC50 ) values of single deleted and complemented mutants of CgCYP51A and CgCYP51B showed that ΔCgCYP51A became more sensitive to difenoconazole, but not ΔCgCYP51B. Furthermore, all single complemented mutants had a stronger biological fitness than the progenitor strain. All the defectives of ΔCgCYP51A and ΔCgCYP51B could be restored by complementation of the whole corresponding gene from the resistant strains. Relative gene expression of CgCYP51A and CgCYP51B in most of the mutants was greatly upregulated relative to the progenitor isolate when treated with difenoconazole at the same concentration. Moreover, the extension of five amino acids (GNETI) caused by mutation at the stop codon of CgCYP51A, concurrent with other seven amino acid substitutions and the synonymous mutation P10P (CCG → CCT), significantly enhanced DMI resistance. CONCLUSION: The DMI resistance of C. gloeosporioides selected in vineyards is conferred by mutations at CgCYP51s, and validated by a genetics method. The roles of CgCYP51A and CgCYP51B overlap, and are counter-balanced, but cannot be replaced reciprocally. © 2020 Society of Chemical Industry.


Asunto(s)
Colletotrichum , Fungicidas Industriales , Vitis , China , Colletotrichum/genética , Fungicidas Industriales/farmacología , Mutación , Esteroles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA