Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 23(6): 768-774, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38243113

RESUMEN

The key challenge of spin-orbit torque applications lies in exploring an excellent spin source capable of generating out-of-plane spins while exhibiting high spin Hall conductivity. Here we combine PtTe2 for high spin conductivity and WTe2 for low crystal symmetry to satisfy the above requirements. The PtTe2/WTe2 bilayers exhibit a high in-plane spin Hall conductivity σs,y ≈ 2.32 × 105 × h/2e Ω-1 m-1 and out-of-plane spin Hall conductivity σs,z ≈ 0.25 × 105 × h/2e Ω-1 m-1, where h is the reduced Planck's constant and e is the value of the elementary charge. The out-of-plane spins in PtTe2/WTe2 bilayers enable the deterministic switching of perpendicular magnetization at room temperature without magnetic fields, and the power consumption is 67 times smaller than that of the Pt control case. The high out-of-plane spin Hall conductivity is attributed to the conversion from in-plane spin to out-of-plane spin, induced by the crystal asymmetry of WTe2. Our work establishes a low-power perpendicular magnetization manipulation based on wafer-scale two-dimensional van der Waals heterostructures.

2.
Nano Lett ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856112

RESUMEN

Electrical manipulation of magnetic states in two-dimensional ferromagnetic systems is crucial in information storage and low-dimensional spintronics. Spin-orbit torque presents a rapid and energy-efficient method for electrical control of the magnetization. In this letter, we demonstrate a wafer-scale spin-orbit torque switching of two-dimensional ferromagnetic states. Using molecular beam epitaxy, we fabricate two-dimensional heterostructures composed of low crystal-symmetry WTe2 and ferromagnet CrTe2 with perpendicular anisotropy. By utilizing out-of-plane spins generated from WTe2, we achieve field-free switching of the CrTe2 perpendicular magnetization. The threshold switching current density in CrTe2/WTe2 is 1.2 × 106 A/cm2, 20 times smaller than that of the CrTe2/Pt control sample even with an external magnetic field. In addition, the switching behavior can be modulated by external magnetic fields and crystal symmetry. Our findings demonstrate a controllable and all-electric manipulation of perpendicular magnetization in a two-dimensional ferromagnet, representing a significant advancement toward the practical implementation of low-dimensional spintronic devices.

3.
Phys Rev Lett ; 133(15): 156704, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39454168

RESUMEN

Chiral magnets have garnered significant interest due to the emergence of unique phenomena prohibited in inversion-symmetric magnets. While the equilibrium characteristics of chiral magnets have been extensively explored through the Dzyaloshinskii-Moriya interaction (DMI), nonequilibrium properties like magnetic damping have received comparatively less attention. We present the inaugural direct observation of chiral damping through Brillouin light scattering (BLS) spectroscopy. Employing BLS spectrum analysis, we independently deduce both the DMI and chiral damping, extracting them from the frequency shift and linewidth of the spectrum peak, respectively. The resulting linewidths exhibit clear odd symmetry with respect to the magnon wave vector, unambiguously confirming the presence of chiral damping. Our study introduces a novel methodology for quantifying chiral damping, with potential ramifications on diverse nonequilibrium phenomena within chiral magnets.

4.
Nano Lett ; 22(21): 8437-8444, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36260522

RESUMEN

Spintronics has been recently extended to neuromorphic computing because of its energy efficiency and scalability. However, a biorealistic spintronic neuron with probabilistic "spiking" and a spontaneous reset functionality has not been demonstrated yet. Here, we propose a biorealistic spintronic neuron device based on the heavy metal (HM)/ferromagnet (FM)/antiferromagnet (AFM) spin-orbit torque (SOT) heterostructure. The spintronic neuron can autoreset itself after firing due to the exchange bias of the AFM. The firing process is inherently stochastic because of the competition between the SOT and AFM pinning effects. We also implement a restricted Boltzmann machine (RBM) and stochastic integration multilayer perceptron (SI-MLP) using our proposed neuron. Despite the bit-width limitation, the proposed spintronic model can achieve an accuracy of 97.38% in pattern recognition, which is even higher than the baseline accuracy (96.47%). Our results offer a spintronic device solution to emulate biologically realistic spiking neurons.


Asunto(s)
Modelos Neurológicos , Neuronas , Neuronas/fisiología , Redes Neurales de la Computación , Imanes , Torque
5.
Nat Mater ; 20(6): 800-804, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33633354

RESUMEN

The discovery of the spin Hall effect1 enabled the efficient generation and manipulation of the spin current. More recently, the magnetic spin Hall effect2,3 was observed in non-collinear antiferromagnets, where the spin conservation is broken due to the non-collinear spin configuration. This provides a unique opportunity to control the spin current and relevant device performance with controllable magnetization. Here, we report a magnetic spin Hall effect in a collinear antiferromagnet, Mn2Au. The spin currents are generated at two spin sublattices with broken spatial symmetry, and the antiparallel antiferromagnetic moments play an important role. Therefore, we term this effect the 'antiferromagnetic spin Hall effect'. The out-of-plane spins from the antiferromagnetic spin Hall effect are favourable for the efficient switching of perpendicular magnetized devices, which is required for high-density applications. The antiferromagnetic spin Hall effect adds another twist to the atomic-level control of spin currents via the antiferromagnetic spin structure.

6.
Nat Nanotechnol ; 19(10): 1478-1484, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39048707

RESUMEN

Spin-wave excitations of magnetic moments (or magnons) can transport spin angular momentum in insulating magnetic materials. This property distinguishes magnonic devices from traditional electronics, where power consumption results from electrons' movement. Recently, magnon torques have been used to switch perpendicular magnetization in the presence of an external magnetic field. Here we present a material system composed of WTe2/antiferromagnetic insulator NiO/ferromagnet CoFeB heterostructures that allows magnetic field-free switching of the perpendicular magnetization. The magnon currents, with a spin polarization canting of -8.5° relative to the sample plane, traverse the 25-nm-thick polycrystalline NiO layer while preserving their original polarization direction, subsequently exerting an out-of-plane anti-damping magnon torque on the ferromagnetic layer. Using this mechanism, we achieve a 190-fold reduction in power consumption in PtTe2/WTe2/NiO/CoFeB heterostructures compared to Bi2Te3/NiO/CoFeB control samples, which only exhibit in-plane magnon torques. Our field-free demonstration contributes to the realization of all-electric, low-power, perpendicular magnetization switching devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA