Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 194(2): 1218-1232, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37874769

RESUMEN

Cassava common mosaic virus (CsCMV, genus Potexvirus) is a prevalent virus associated with cassava mosaic disease, so it is essential to elucidate the underlying molecular mechanisms of the coevolutionary arms race between viral pathogenesis and the cassava (Manihot esculenta Crantz) defense response. However, the molecular mechanism underlying CsCMV infection is largely unclear. Here, we revealed that coat protein (CP) acts as a major pathogenicity determinant of CsCMV via a mutant infectious clone. Moreover, we identified the target proteins of CP-related to abscisic acid insensitive3 (ABI3)/viviparous1 (VP1) (MeRAV1) and MeRAV2 transcription factors, which positively regulated disease resistance against CsCMV via transcriptional activation of melatonin biosynthetic genes (tryptophan decarboxylase 2 (MeTDC2), tryptamine 5-hydroxylase (MeT5H), N-aceylserotonin O-methyltransferase 1 (MeASMT1)) and MeCatalase6 (MeCAT6) and MeCAT7. Notably, the interaction between CP, MeRAV1, and MeRAV2 interfered with the protein phosphorylation of MeRAV1 and MeRAV2 individually at Ser45 and Ser44 by the protein kinase, thereby weakening the transcriptional activation activity of MeRAV1 and MeRAV2 on melatonin biosynthetic genes, MeCAT6 and MeCAT7 dependent on the protein phosphorylation of MeRAV1 and MeRAV2. Taken together, the identification of the CP-MeRAV1 and CP-MeRAV2 interaction module not only illustrates a molecular mechanism by which CsCMV orchestrates the host defense system to benefit its infection and development but also provides a gene network with potential value for the genetic improvement of cassava disease resistance.


Asunto(s)
Manihot , Melatonina , Virus del Mosaico , Potexvirus , Resistencia a la Enfermedad/genética , Manihot/genética , Manihot/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Potexvirus/genética , Melatonina/metabolismo , Enfermedades de las Plantas/genética
2.
Plant Physiol ; 194(4): 2724-2738, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38198213

RESUMEN

Global warming is an adverse environmental factor that threatens crop yields and food security. 2C-type protein phosphatases (PP2Cs), as core protein phosphatase components, play important roles in plant hormone signaling to cope with various environmental stresses. However, the function and underlying mechanism of PP2Cs in the heat stress response remain elusive in tropical crops. Here, we report that MePP2C1 negatively regulated thermotolerance in cassava (Manihot esculenta Crantz), accompanied by the modulation of reactive oxygen species (ROS) accumulation and the underlying antioxidant enzyme activities of catalase (CAT) and ascorbate peroxidase (APX). Further investigation found that MePP2C1 directly interacted with and dephosphorylated MeCAT1 and MeAPX2 at serine (S) 112 and S160 residues, respectively. Moreover, in vitro and in vivo assays showed that protein phosphorylation of MeCAT1S112 and MeAPX2S160 was essential for their enzyme activities, and MePP2C1 negatively regulated thermotolerance and redox homeostasis by dephosphorylating MeCAT1S112 and MeAPX2S160. Taken together, this study illustrates the direct relationship between MePP2C1-mediated protein dephosphorylation of MeCAT1 and MeAPX2 and ROS accumulation in thermotolerance to provide insights for adapting to global warming via fine-tuning thermotolerance of the tropical crop cassava.


Asunto(s)
Manihot , Termotolerancia , Antioxidantes , Manihot/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Monoéster Fosfórico Hidrolasas
3.
Plant Biotechnol J ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768314

RESUMEN

Cassava bacterial blight significantly affects cassava yield worldwide, while major cassava cultivars are susceptible to this disease. Therefore, it is crucial to identify cassava disease resistance gene networks and defence molecules for the genetic improvement of cassava cultivars. In this study, we found that MeHB16 transcription factor as a differentially expressed gene in cassava cultivars with contrasting disease resistance, positively modulated disease resistance by modulating defence molecule lignin accumulation. Further investigation showed that MeHB16 physically interacted with itself via the leucine-Zippe domain (L-Zip), which was necessary for the transcriptional activation of downstream lignin biosynthesis genes. In addition, protein kinase MeKIN10 directly interacted with MeHB16 to promote its phosphorylation at Ser6, which in turn enhanced MeHB16 self-association and downstream lignin biosynthesis. In summary, this study revealed the molecular network of MeKIN10-mediated MeHB16 protein phosphorylation improved cassava bacterial blight resistance by fine-tuning lignin biosynthesis and provides candidate genes and the defence molecule for improving cassava disease resistance.

4.
Plant Biotechnol J ; 22(9): 2424-2434, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38600705

RESUMEN

The nuclear factor Y (NF-Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF-Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF-YC15 gene in the NF-Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF-YC15-silenced and -overexpressed cassava plants, we elucidated that MeNF-YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF-YC15 downstream genes and revealed the direct genetic relationship between MeNF-YC15 and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (MeACO1)-ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF-YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C-type protein phosphatase 1 (MePP2C1) and MeNF-YC15 inhibited the transcriptional activation of MeACO1 by MeNF-YC15. In summary, MePP2C1-MeNF-YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.


Asunto(s)
Resistencia a la Enfermedad , Etilenos , Manihot , Enfermedades de las Plantas , Proteínas de Plantas , Manihot/genética , Manihot/metabolismo , Manihot/microbiología , Etilenos/metabolismo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Xanthomonas axonopodis/patogenicidad , Plantas Modificadas Genéticamente , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo
5.
J Transl Med ; 22(1): 202, 2024 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-38403655

RESUMEN

BACKGROUND: The relationship between the gut mycobiome and end-stage renal disease (ESRD) remains largely unexplored. METHODS: In this study, we compared the gut fungal populations of 223 ESRD patients and 69 healthy controls (HCs) based on shotgun metagenomic sequencing data, and analyzed their associations with host serum and fecal metabolites. RESULTS: Our findings revealed that ESRD patients had a higher diversity in the gut mycobiome compared to HCs. Dysbiosis of the gut mycobiome in ESRD patients was characterized by a decrease of Saccharomyces cerevisiae and an increase in various opportunistic pathogens, such as Aspergillus fumigatus, Cladophialophora immunda, Exophiala spinifera, Hortaea werneckii, Trichophyton rubrum, and others. Through multi-omics analysis, we observed a substantial contribution of the gut mycobiome to host serum and fecal metabolomes. The opportunistic pathogens enriched in ESRD patients were frequently and positively correlated with the levels of creatinine, homocysteine, and phenylacetylglycine in the serum. The populations of Saccharomyces, including the HC-enriched Saccharomyces cerevisiae, were frequently and negatively correlated with the levels of various toxic metabolites in the feces. CONCLUSIONS: Our results provided a comprehensive understanding of the associations between the gut mycobiome and the development of ESRD, which had important implications for guiding future therapeutic studies in this field.


Asunto(s)
Microbioma Gastrointestinal , Fallo Renal Crónico , Micobioma , Humanos , Saccharomyces cerevisiae , Heces/microbiología , Metaboloma
6.
New Phytol ; 242(6): 2734-2745, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581188

RESUMEN

Cassava is one of the most important tropical crops, but it is seriously affected by cassava bacteria blight (CBB) caused by the bacterial pathogen Xanthomonas phaseoli pv manihotis (Xam). So far, how pathogen Xam infects and how host cassava defends during pathogen-host interaction remains elusive, restricting the prevention and control of CBB. Here, the illustration of HEAT SHOCK PROTEIN 90 kDa (MeHSP90.9) interacting proteins in both cassava and bacterial pathogen revealed the dual roles of MeHSP90.9 in cassava-Xam interaction. On the one hand, calmodulin-domain protein kinase 1 (MeCPK1) directly interacted with MeHSP90.9 to promote its protein phosphorylation at serine 175 residue. The protein phosphorylation of MeHSP90.9 improved the transcriptional activation of MeHSP90.9 clients (SHI-RELATED SEQUENCE 1 (MeSRS1) and MeWRKY20) to the downstream target genes (avrPphB Susceptible 3 (MePBS3) and N-aceylserotonin O-methyltransferase 2 (MeASMT2)) and immune responses. On the other hand, Xanthomonas outer protein C2 (XopC2) physically associated with MeHSP90.9 to inhibit its interaction with MeCPK1 and the corresponding protein phosphorylation by MeCPK1, so as to repress host immune responses and promote bacterial pathogen infection. In summary, these results provide new insights into genetic improvement of cassava disease resistance and extend our understanding of cassava-bacterial pathogen interaction.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Manihot , Enfermedades de las Plantas , Proteínas de Plantas , Fosforilación , Proteínas HSP90 de Choque Térmico/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Manihot/microbiología , Manihot/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiología , Xanthomonas/patogenicidad , Interacciones Huésped-Patógeno , Unión Proteica , Regulación de la Expresión Génica de las Plantas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Resistencia a la Enfermedad/genética
7.
J Med Virol ; 96(7): e29802, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023095

RESUMEN

Irritable bowel syndrome (IBS), a chronic functional gastrointestinal disorder, is recognized for its association with alterations in the gut microbiome and metabolome. This study delves into the largely unexplored domain of the gut virome in IBS patients. We conducted a comprehensive analysis of the fecal metagenomic data set from 277 IBS patients and 84 healthy controls to characterize the gut viral community. Our findings revealed a distinct gut virome in IBS patients compared to healthy individuals, marked by significant variances in between-sample diversity and altered abundances of 127 viral operational taxonomic units (vOTUs). Specifically, 111 vOTUs, predominantly belonging to crAss-like, Siphoviridae, Myoviridae, and Quimbyviridae families, were more abundant in IBS patients, whereas the healthy control group exhibited enrichment of 16 vOTUs from multiple families. We also investigated the interplay between the gut virome and bacteriome, identifying a correlation between IBS-enriched bacteria like Klebsiella pneumoniae, Fusobacterium varium, and Ruminococcus gnavus, and the IBS-associated vOTUs. Furthermore, we assessed the potential of gut viral signatures in predicting IBS, achieving a notable area under the receiver operator characteristic curve (AUC) of 0.834. These findings highlight significant shifts in the viral diversity, taxonomic distribution, and functional composition of the gut virome in IBS patients, suggesting the potential role of the gut virome in IBS pathogenesis and opening new avenues for diagnostic and therapeutic strategies targeting the gut virome in IBS management.


Asunto(s)
Heces , Microbioma Gastrointestinal , Síndrome del Colon Irritable , Metagenómica , Viroma , Humanos , Síndrome del Colon Irritable/virología , Síndrome del Colon Irritable/microbiología , Microbioma Gastrointestinal/genética , Heces/virología , Heces/microbiología , Virus/clasificación , Virus/genética , Virus/aislamiento & purificación , Adulto , Masculino , Femenino , Persona de Mediana Edad , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Metagenoma
8.
J Med Virol ; 96(7): e29809, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39016466

RESUMEN

Pancreatic cancer (PC) is a highly aggressive malignancy with a poor prognosis, making early diagnosis crucial for improving patient outcomes. While the gut microbiome, including bacteria and viruses, is believed to be essential in cancer pathogenicity, the potential contribution of the gut virome to PC remains largely unexplored. In this study, we conducted a comparative analysis of the gut viral compositional and functional profiles between PC patients and healthy controls, based on fecal metagenomes from two publicly available data sets comprising a total of 101 patients and 82 healthy controls. Our results revealed a decreasing trend in the gut virome diversity of PC patients with disease severity. We identified significant alterations in the overall viral structure of PC patients, with a meta-analysis revealing 219 viral operational taxonomic units (vOTUs) showing significant differences in relative abundance between patients and healthy controls. Among these, 65 vOTUs were enriched in PC patients, and 154 were reduced. Host prediction revealed that PC-enriched vOTUs preferentially infected bacterial members of Veillonellaceae, Enterobacteriaceae, Fusobacteriaceae, and Streptococcaceae, while PC-reduced vOTUs were more likely to infect Ruminococcaceae, Lachnospiraceae, Clostridiaceae, Oscillospiraceae, and Peptostreptococcaceae. Furthermore, we constructed random forest models based on the PC-associated vOTUs, achieving an optimal average area under the curve (AUC) of up to 0.879 for distinguishing patients from controls. Through additional 10 public cohorts, we demonstrated the reproducibility and high specificity of these viral signatures. Our study suggests that the gut virome may play a role in PC development and could serve as a promising target for PC diagnosis and therapeutic intervention. Future studies should further explore the underlying mechanisms of gut virus-bacteria interactions and validate the diagnostic models in larger and more diverse populations.


Asunto(s)
Heces , Microbioma Gastrointestinal , Metagenómica , Neoplasias Pancreáticas , Viroma , Humanos , Neoplasias Pancreáticas/virología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/microbiología , Microbioma Gastrointestinal/genética , Metagenómica/métodos , Heces/virología , Heces/microbiología , Virus/aislamiento & purificación , Virus/genética , Virus/clasificación , Metagenoma , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Persona de Mediana Edad , Masculino , Femenino , Anciano , Estudios de Casos y Controles
9.
Plant Physiol ; 193(3): 2232-2247, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37534747

RESUMEN

Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.


Asunto(s)
Manihot , Xanthomonas axonopodis , Xanthomonas axonopodis/metabolismo , Manihot/genética , Manihot/metabolismo , Manihot/microbiología , Histonas/metabolismo , Resistencia a la Enfermedad/genética , Acetilación , Enfermedades de las Plantas/microbiología
10.
J Exp Bot ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623889

RESUMEN

Cassava is one of the most important tuber crops that is used for food, starch and bio-energy. However, cassava is susceptible to a number of diseases, especially cassava bacterial blight (CBB). Nitric oxide (NO) and hydrogen peroxide (H2O2) regulate plant growth and development, as well as stress responses. However, no direct relationships between the enzymes involved in the metabolic enzymes that produce and process these key signaling molecules has been demonstrated. Here, we provide evidence for the interaction between the nitrate reductase 2 (MeNR2) and catalase 1 (MeCAT1) proteins in vitro and in vivo, using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, respectively. MeNR2 is a positive regulator and MeCAT1 is a negative regulator of CBB resistance. MeNR2 was localized in the nucleus, cell membrane and peroxisome, while MeCAT1 was localized in the peroxisomes. The interactions between MeNR2 and MeCAT1 also had effects of their respective enzyme activities. Taken together, the data presented here suggested that there is coordination between H2O2 and NO signaling in cassava disease resistance, through the interactions between MeCAT1 and MeNR2.

11.
J Exp Biol ; 227(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149682

RESUMEN

Elevation in water salinity can threaten the spermatogenesis and fertility of freshwater animals. The role of the renin-angiotensin system (RAS) in regulating spermatogenesis has attracted considerable attention. Our previous study found that red-eared sliders (Trachemys scripta elegans), could survive in 10 PSU water for over 1 year. To understand the chronic impact of salinity on testicular spermatogenesis and underlying mechanisms, male T. s. elegans were subjected to treatment with water of 5 PSU and 10 PSU for a year, and spermatogenesis and regulation of the RAS signal pathway was assessed. Results showed induced inflammation in the testes of T. s. elegans in the 10 PSU group, as evidenced by a decrease in the number of testicular germ cells from 1586 to 943. Compared with the control group, the levels of proinflammatory genes, including TNF-α, IL-12A and IL-6 were elevated 3.1, 0.3, and 1.4 times, respectively, in animals exposed to 10 PSU water. Testicular antiapoptotic processes of T. s. elegans might involve the vasoactive peptide angiotensin-(1-7) in the RAS, as its level was significantly increased from 220.2 ng ml-1 in controls to 419.2 ng ml-1 in the 10 PSU group. As expected, specific inhibitor (A-779) for the Ang-(1-7) acceptor effectively prevented the salinity-induced upregulation of genes encoding anti-inflammatory and antiapoptotic factors (TGF-ß1, Bcl-6) in the testis of the 10 PSU animals, whereas it promoted the upregulation of proinflammatory and proapoptotic factors (TNF-α, IL-12A, IL-6, Bax and caspase-3). Our data indicated that Ang-(1-7) attenuates the effect of salinity on inflammation and apoptosis of the testis in T. s. elegans. A new perspective to prevent salinity-induced testis dysfunction is provided.


Asunto(s)
Angiotensina I , Fragmentos de Péptidos , Factor de Necrosis Tumoral alfa , Tortugas , Animales , Masculino , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Estrés Salino , Tortugas/metabolismo , Inflamación , Espermatogénesis , Agua/metabolismo
12.
Plant Cell Rep ; 43(6): 153, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806727

RESUMEN

KEY MESSAGE: MePMTR1 is involved in plant development and production as well as photosynthesis in plant. Melatonin is widely involved in plant growth and development as well as stress responses. Compared with the extending studies of melatonin in stress responses, the direct link between melatonin and plant development in the whole stages remains unclear. With the identification of phytomelatonin receptor PMTR1 in plants, melatonin signalling is becoming much clearer. However, the function of MePMTR1 in tropical crop cassava remains elusive. In this study, we found that overexpression of MePMTR1 showed larger biomass than wild type (WT), including higher number and area of leaves, weight, and accompanying with higher photosynthetic efficiency. Consistently, exogenous melatonin accelerated photosynthetic rate in Arabidopsis. In addition, MePMTR1-overexpressed plants exhibited more resistance to dark-induced senescence compared with WT, demonstrated by higher chlorophyll, lower hydrogen peroxide and superoxide content. In summary, this study illustrated that melatonin and its receptor regulate growth, development and senescence in plants, highlighting the potential application of melatonin and its receptor in improving crop yield and photosynthesis.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Manihot , Melatonina , Fotosíntesis , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Melatonina/metabolismo , Manihot/genética , Manihot/crecimiento & desarrollo , Manihot/metabolismo , Receptores de Melatonina/metabolismo , Receptores de Melatonina/genética , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Clorofila/metabolismo , Oscuridad , Peróxido de Hidrógeno/metabolismo
13.
Plant J ; 112(5): 1212-1223, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36239073

RESUMEN

As one of the most important food crops, cassava (Manihot esculenta) is the main dietary source of micronutrients for about 1 billion people. However, the ionomic variation in cassava and the underlying genetic mechanisms remain unclear so far. Herein, genome-wide association studies were performed to reveal the specific single nucleotide polymorphisms (SNPs) that affect the ionomic variation in cassava. We identified 164 SNPs with P-values lower than the threshold located in 88 loci associated with divergent ionomic variations. Among them, 13 SNPs are related to both calcium (Ca) and magnesium (Mg), and many loci for different ionomic traits seem to be clustered on specific chromosome regions. Moreover, we identified the peak SNPs in the promoter regions of Sc10g003170 (encoding methionyl-tRNA synthetase [MetRS]) and Sc18g015190 (encoding the transcriptional regulatory protein AlgP) for nitrogen (N) and phosphorus (P) accumulation, respectively. Notably, these two SNPs (chr10_32807962 and chr18_31343738) were directly correlated with the transcript levels of Sc10g003170 (MetRS) and Sc18g015190 (AlgP), which positively modulated N accumulation and P concentration in cassava, respectively. Taken together, this study provides important insight into the genetic basis of cassava natural ionomic variation, which will promote genetic breeding to improve nutrient use and accumulation of elements in cassava.


Asunto(s)
Manihot , Manihot/genética , Manihot/metabolismo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Variación Genética
14.
Plant J ; 111(3): 683-697, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608142

RESUMEN

Ethylene and melatonin are widely involved in plant development and environmental stress responses. However, the role of their direct relationship in the immune response and the underlying molecular mechanisms in plants remain elusive. Here, we found that Xanthomonas axonopodis pv. manihotis (Xam) infection increased endogenous ethylene levels, which positively modulated plant disease resistance through activating melatonin accumulation in cassava. In addition, the ethylene-responsive transcription factor ETHYLENE INSENSITIVE LIKE5 (MeEIL5), a positive regulator of disease resistance, was essential for ethylene-induced melatonin accumulation and disease resistance in cassava. Notably, the identification of heat stress transcription factor 20 (MeHsf20) as an interacting protein of MeEIL5 indicated the association between ethylene and melatonin in plant disease resistance. MeEIL5 physically interacted with MeHsf20 to promote the transcriptional activation of the gene encoding N-acetylserotonin O-methyltransferase 2 (MeASMT2), thereby improving melatonin accumulation. Moreover, MeEIL5 promoted the physical interaction of MeHsf20 and pathogen-related gene 3 (MePR3), resulting in improved anti-bacterial activity of MePR3. This study illustrates the dual roles of MeEIL5 in fine-tuning MeHsf20-mediated coordination of melatonin biosynthesis and anti-bacterial activity, highlighting the ethylene-responsive MeEIL5 as the integrator of ethylene and melatonin signals in the immune response in cassava.


Asunto(s)
Manihot , Melatonina , Xanthomonas , Resistencia a la Enfermedad/genética , Etilenos/metabolismo , Manihot/genética , Manihot/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/metabolismo
15.
Plant J ; 110(5): 1447-1461, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35352421

RESUMEN

Reactive oxygen species (ROS) overproduction leads to oxidative damage under almost all stress conditions. Lesion-Simulating Disease (LSD), a zinc finger protein, is an important negative regulator of ROS accumulation and cell death in plants. However, the in vivo role of LSD in cassava (Manihot esculenta) and the underlying molecular mechanisms remain elusive. Here, we found that MeLSD3 is essential for the oxidative stress response in cassava. MeLSD3 physically interacted with ascorbate peroxidase 2 (MeAPX2), thereby promoting its enzymatic activity. In addition, MeLSD3 also interacted with the nuclear factor YC15 (MeNF-YC15), which also interacted with nuclear factor YA2/4 (MeNF-YA2/4) and nuclear factor YB18 (MeNF-YB18) to form an MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex. Notably, MeLSD3 positively modulated the transcriptional activation of the MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex by interacting with the CCAAT boxes of the promoters of glutathione S-transferases U37/U39 (MeGST-U37/U39), activating their transcription. When one or both of MeLSD3 and the MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex were co-silenced, cassava showed decreased oxidative stress resistance, while overexpression of MeGST-U37/U39 alleviated the oxidative stress-sensitive phenotype of these silenced plants. This study illustrates the dual roles of MeLSD3 in promoting MeAPX2 activity and MeNF-YC15-MeGST-U37/U39 regulation, which underlie the oxidative stress response in cassava.


Asunto(s)
Manihot , Manihot/genética , Manihot/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
16.
Plant Cell Environ ; 46(2): 635-649, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36451539

RESUMEN

Cassava bacterial blight (CBB) is one of the most serious diseases in cassava production, so it is essential to explore the underlying mechanism of immune responses. Histone acetylation is an important epigenetic modification, however, its relationship with cassava disease resistance remains unclear. Here, we identified 10 histone acetyltransferases in cassava and found that the transcript of MeHAM1 showed the highest induction to CBB. Functional analysis showed that MeHAM1 positively regulated disease resistance to CBB through modulation of salicylic acid (SA) accumulation. Further investigation revealed that MeHAM1 directly activated SA biosynthetic genes' expression via promoting lysine 9 of histone 3 (H3K9) acetylation and lysine 5 of histone 4 (H4K5) acetylation of these genes. In addition, molecular chaperone MeDNAJA2 physically interacted with MeHAM1, and MeDNAJA2 also regulated plant immune responses and SA biosynthetic genes. In conclusion, this study illustrates that MeHAM1 and MeDNAJA2 confer immune responses through transcriptional programming of SA biosynthetic genes via histone acetylation. The MeHAM1 & MeDNAJA2-SA biosynthesis module not only constructs the direct relationship between histone acetylation and cassava disease resistance, but also provides gene network with potential value for genetic improvement of cassava disease resistance.


Asunto(s)
Manihot , Ácido Salicílico , Ácido Salicílico/metabolismo , Resistencia a la Enfermedad/genética , Histonas/metabolismo , Manihot/genética , Manihot/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Lisina/metabolismo , Acetilación
17.
Arch Microbiol ; 205(6): 218, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37145326

RESUMEN

The imbalance of Th17 and Treg cell differentiation, intestinal flora imbalance, and intestinal mucosal barrier damage may be important links in the occurrence and development of inflammatory bowel disease (IBD) since Th17 and Treg differentiation are affected by the intestinal flora. This study aimed to explore the effect of Escherichia coli (E. coli) LF82 on the differentiation of Th17 and Treg cells and the role of the intestinal flora in mouse colitis. The effects of E. coli LF82 infection on intestinal inflammation were evaluated by analyzing the disease activity index, histology, myeloperoxidase activity, FITC-D fluorescence value, and claudin-1 and ZO-1 expression. The effects of E. coli LF82 on the Th17/Treg balance and intestinal flora were analyzed by flow cytometry and 16S rDNA sequencing. Inflammatory markers, changes in the intestinal flora, and Th17/Treg cells were then detected after transplanting fecal bacteria from normal mice into colitis mice infected by E. coli LF82. We found that E. coli LF82 infection can aggravate the intestinal inflammation of mice colitis, destroy their intestinal mucosal barrier, increase intestinal mucosal permeability, and aggravate the imbalance of Th17/Treg differentiation and the disorder of intestinal flora. After improving the intestinal flora imbalance by fecal bacteria transplantation, intestinal inflammation and intestinal mucosal barrier damage were reduced, and the differentiation balance of Th17 and Treg cells was restored. This study showed that E. coli LF82 infection aggravates intestinal inflammation and intestinal mucosal barrier damage in colitis by affecting the intestinal flora composition and indirectly regulating the Th17 and Treg cell differentiation balance.


Asunto(s)
Colitis , Infecciones por Escherichia coli , Microbioma Gastrointestinal , Ratones , Animales , Escherichia coli , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Colitis/metabolismo , Colitis/microbiología , Colitis/patología , Infecciones por Escherichia coli/microbiología , Bacterias , Inflamación , Diferenciación Celular
18.
Liver Int ; 43(9): 1920-1936, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37183512

RESUMEN

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) consists of a broad spectrum of conditions, and nonalcoholic steatohepatitis (NASH) is the advanced form of NAFLD. TAF15 is a DNA and RNA binding protein and is involved in crucial inflammatory signalling pathways. We aimed to investigate the role of TAF15 in the progression of NASH and the underlying molecular mechanism. METHODS: We generated mice with hepatocyte-specific knockdown and overexpression of TAF15 using a specific adeno-associated virus (AAV). NASH models were established by feeding mice high-fat and high-cholesterol diets and methionine- and choline-deficient diets. Cleavage under targets and tagmentation and dual-luciferase reporter assays were performed to investigate the effect of TAF15 on FASN transcription. Coimmunoprecipitation and immunofluorescence assays were conducted to explore the interaction of TAF15 and p65. In vitro coculture systems were established to study the interactions of hepatocytes, macrophages and HSCs. RESULTS: TAF15 was significantly increased in the livers of mouse NASH models and primary hepatocyte NASH model. Knockdown of TAF15 inhibited steatosis, inflammation and fibrosis, while overexpression of TAF15 promoted NASH phenotypes. Mechanistically, TAF15 bound directly to the promoter region of FASN to facilitate its expression, thereby promoting steatosis. Moreover, TAF15 interacted with p65 and activated the NF-κB signalling pathway, increasing the secretion of proinflammatory cytokines and triggering M1 macrophage polarization. Treatment with the FASN inhibitor orlistat partially reversed the phenotypes. CONCLUSIONS: These results suggested that TAF15 exacerbated NASH progression by regulating lipid metabolism and inflammation via transcriptional activation of FASN and interacting with p65 to activate the NF-κB signalling pathway.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Factores Asociados con la Proteína de Unión a TATA , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , FN-kappa B/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Factores Asociados con la Proteína de Unión a TATA/metabolismo
19.
J Pineal Res ; 74(3): e12861, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36750349

RESUMEN

Melatonin participates in plant growth and development and biotic and abiotic stress responses. Histone acetylation regulates many plant biological processes via transcriptional reprogramming. However, the direct relationship between melatonin and histone acetylation in plant disease resistance remains unclear. In this study, we identified cassava bacterial blight (CBB) responsive histone deacetylase 9 (HDA9), which negatively regulated disease resistance to CBB by reducing melatonin content. In addition, exogenous melatonin alleviated disease sensitivity of MeHDA9 overexpressed plants to CBB. Importantly, MeHDA9 inhibited the expression of melatonin biosynthetic genes through decreasing lysine 5 of histone 4 (H4K5) acetylation at the promoter regions of melatonin biosynthetic genes, thereby modulating melatonin accumulation in cassava. Furthermore, protein phosphatase 2C 12 (MePP2C12) interacted with MeHDA9 in vivo and in vitro, and it was involved in MeHDA9-mediated disease resistance via melatonin biosynthetic pathway. In summary, this study highlights the direct interaction between histone deacetylation and melatonin biosynthetic genes in cassava disease resistance via histone deacetylation, providing new insights into the genetic improvement of disease resistance via epigenetic regulation of melatonin level in tropical crops.


Asunto(s)
Manihot , Melatonina , Melatonina/metabolismo , Histonas/genética , Histonas/metabolismo , Manihot/genética , Manihot/metabolismo , Resistencia a la Enfermedad/genética , Epigénesis Genética , Plantas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Dig Dis ; 41(5): 737-745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37369180

RESUMEN

BACKGROUND: Studies have found that water-assisted colonoscopy (WAC) including water immersion colonoscopy (WIC) and water exchange colonoscopy (WEC) is superior to air insufflation colonoscopy (AIC) in terms of the cecal intubation rate. However, the application of WAC in ulcerative colitis (UC) has rarely been reported. This study aimed to explore the effectiveness of WAC without sedation in patients with UC. METHODS: One hundred and seventy-two UC patients were randomly divided into the AIC group (n = 56), WIC group (n = 58), and WEC group (n = 58). The cecal intubation rate, abdominal pain score, operator difficulty, bowel cleanliness, insertion, and total time were compared. RESULTS: The cecal intubation rate was higher in the WIC (91.4% vs. 75.0%; mean difference = 16.4%; 95% CI: 3.0-29.8%) and WEC (93.1% vs. 75.0%; mean difference = 18.1%; 95% CI: 5.0-31.2%) compared to the AIC group, while there was no difference between the WIC and WEC groups. The abdominal pain score and operator difficulty were lower in the WIC and WEC groups than in the AIC group, while there was no difference between the WIC and WEC groups. The bowel cleanliness during withdrawal was higher in the WIC and WEC groups than in the AIC group, while the WEC was superior to WIC. Compared with the AIC and WIC groups, the insertion time and total time were longer in the WEC group, and there was no difference in the AIC group and WIC group. CONCLUSION: In comparison with AIC, WAC can increase the cecal intubation rate, reduce abdominal pain scores and improve bowel cleanliness in patients with UC.


Asunto(s)
Colitis Ulcerosa , Colonoscopía , Humanos , Ciego , Agua , Colitis Ulcerosa/diagnóstico , Dolor Abdominal/diagnóstico , Dolor Abdominal/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA