Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 172(6): 1294-1305, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29522748

RESUMEN

Cell shape matters across the kingdoms of life, and cells have the remarkable capacity to define and maintain specific shapes and sizes. But how are the shapes of micron-sized cells determined from the coordinated activities of nanometer-sized proteins? Here, we review general principles that have surfaced through the study of rod-shaped bacterial growth. Imaging approaches have revealed that polymers of the actin homolog MreB play a central role. MreB both senses and changes cell shape, thereby generating a self-organizing feedback system for shape maintenance. At the molecular level, structural and computational studies indicate that MreB filaments exhibit tunable mechanical properties that explain their preference for certain geometries and orientations along the cylindrical cell body. We illustrate the regulatory landscape of rod-shape formation and the connectivity between cell shape, cell growth, and other aspects of cell physiology. These discoveries provide a framework for future investigations into the architecture and construction of microbes.


Asunto(s)
Membrana Celular/genética , Pared Celular/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Membrana Celular/metabolismo , Pared Celular/metabolismo , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica
2.
Cell ; 165(6): 1493-1506, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27238023

RESUMEN

Essential gene functions underpin the core reactions required for cell viability, but their contributions and relationships are poorly studied in vivo. Using CRISPR interference, we created knockdowns of every essential gene in Bacillus subtilis and probed their phenotypes. Our high-confidence essential gene network, established using chemical genomics, showed extensive interconnections among distantly related processes and identified modes of action for uncharacterized antibiotics. Importantly, mild knockdown of essential gene functions significantly reduced stationary-phase survival without affecting maximal growth rate, suggesting that essential protein levels are set to maximize outgrowth from stationary phase. Finally, high-throughput microscopy indicated that cell morphology is relatively insensitive to mild knockdown but profoundly affected by depletion of gene function, revealing intimate connections between cell growth and shape. Our results provide a framework for systematic investigation of essential gene functions in vivo broadly applicable to diverse microorganisms and amenable to comparative analysis.


Asunto(s)
Bacillus subtilis/genética , Genes Bacterianos , Genes Esenciales , Sistemas CRISPR-Cas , Técnicas de Silenciamiento del Gen , Biblioteca de Genes , Redes Reguladoras de Genes , Terapia Molecular Dirigida
3.
Nature ; 617(7961): 581-591, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37165188

RESUMEN

The spatiotemporal structure of the human microbiome1,2, proteome3 and metabolome4,5 reflects and determines regional intestinal physiology and may have implications for disease6. Yet, little is known about the distribution of microorganisms, their environment and their biochemical activity in the gut because of reliance on stool samples and limited access to only some regions of the gut using endoscopy in fasting or sedated individuals7. To address these deficiencies, we developed an ingestible device that collects samples from multiple regions of the human intestinal tract during normal digestion. Collection of 240 intestinal samples from 15 healthy individuals using the device and subsequent multi-omics analyses identified significant differences between bacteria, phages, host proteins and metabolites in the intestines versus stool. Certain microbial taxa were differentially enriched and prophage induction was more prevalent in the intestines than in stool. The host proteome and bile acid profiles varied along the intestines and were highly distinct from those of stool. Correlations between gradients in bile acid concentrations and microbial abundance predicted species that altered the bile acid pool through deconjugation. Furthermore, microbially conjugated bile acid concentrations exhibited amino acid-dependent trends that were not apparent in stool. Overall, non-invasive, longitudinal profiling of microorganisms, proteins and bile acids along the intestinal tract under physiological conditions can help elucidate the roles of the gut microbiome and metabolome in human physiology and disease.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Intestinos , Metaboloma , Proteoma , Humanos , Ácidos y Sales Biliares/metabolismo , Microbioma Gastrointestinal/fisiología , Proteoma/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Heces/química , Heces/microbiología , Heces/virología , Intestinos/química , Intestinos/metabolismo , Intestinos/microbiología , Intestinos/fisiología , Intestinos/virología , Digestión/fisiología
4.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34117124

RESUMEN

Environmental fluctuations are a common challenge for single-celled organisms; enteric bacteria such as Escherichia coli experience dramatic changes in nutrient availability, pH, and temperature during their journey into and out of the host. While the effects of altered nutrient availability on gene expression and protein synthesis are well known, their impacts on cytoplasmic dynamics and cell morphology have been largely overlooked. Here, we discover that depletion of utilizable nutrients results in shrinkage of E. coli's inner membrane from the cell wall. Shrinkage was accompanied by an ∼17% reduction in cytoplasmic volume and a concurrent increase in periplasmic volume. Inner membrane retraction after sudden starvation occurred almost exclusively at the new cell pole. This phenomenon was distinct from turgor-mediated plasmolysis and independent of new transcription, translation, or canonical starvation-sensing pathways. Cytoplasmic dry-mass density increased during shrinkage, suggesting that it is driven primarily by loss of water. Shrinkage was reversible: upon a shift to nutrient-rich medium, expansion started almost immediately at a rate dependent on carbon source quality. A robust entry into and recovery from shrinkage required the Tol-Pal system, highlighting the importance of envelope coupling during shrinkage and recovery. Klebsiella pneumoniae also exhibited shrinkage when shifted to carbon-free conditions, suggesting a conserved phenomenon. These findings demonstrate that even when Gram-negative bacterial growth is arrested, cell morphology and physiology are still dynamic.


Asunto(s)
Citoplasma/fisiología , Escherichia coli/fisiología , Carbono/deficiencia , Carbono/farmacología , Citoplasma/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Nitrógeno/análisis , Fósforo/análisis
5.
Proc Natl Acad Sci U S A ; 117(43): 26907-26914, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046656

RESUMEN

The outer membrane (OM) of Gram-negative bacteria is a selective permeability barrier that allows uptake of nutrients while simultaneously protecting the cell from harmful compounds. The basic pathways and molecular machinery responsible for transporting lipopolysaccharides (LPS), lipoproteins, and ß-barrel proteins to the OM have been identified, but very little is known about phospholipid (PL) transport. To identify genes capable of affecting PL transport, we screened for genetic interactions with mlaA*, a mutant in which anterograde PL transport causes the inner membrane (IM) to shrink and eventually rupture; characterization of mlaA*-mediated lysis suggested that PL transport can occur via a high-flux diffusive flow mechanism. We found that YhdP, an IM protein involved in maintaining the OM permeability barrier, modulates the rate of PL transport during mlaA*-mediated lysis. Deletion of yhdP from mlaA* reduced the rate of IM transport to the OM by 50%, slowing shrinkage of the IM and delaying lysis. As a result, the weakened OM of ∆yhdP cells was further compromised and ruptured before the IM during mlaA*-mediated death. These findings demonstrate the existence of a high-flux diffusive pathway for PL flow in Escherichia coli that is modulated by YhdP.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Transferencia de Fosfolípidos/fisiología , Fosfolípidos/metabolismo , Escherichia coli K12
6.
Proc Natl Acad Sci U S A ; 115(14): 3692-3697, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555747

RESUMEN

The folding and insertion of integral ß-barrel membrane proteins into the outer membrane of Gram-negative bacteria is required for viability and bacterial pathogenesis. Unfortunately, the lack of selective and potent modulators to dissect ß-barrel folding in vivo has hampered our understanding of this fundamental biological process. Here, we characterize a monoclonal antibody that selectively inhibits an essential component of the Escherichia coli ß-barrel assembly machine, BamA. In the absence of complement or other immune factors, the unmodified antibody MAB1 demonstrates bactericidal activity against an E. coli strain with truncated LPS. Direct binding of MAB1 to an extracellular BamA epitope inhibits its ß-barrel folding activity, induces periplasmic stress, disrupts outer membrane integrity, and kills bacteria. Notably, resistance to MAB1-mediated killing reveals a link between outer membrane fluidity and protein folding by BamA in vivo, underscoring the utility of this antibody for studying ß-barrel membrane protein folding within a living cell. Identification of this BamA antagonist highlights the potential for new mechanisms of antibiotics to inhibit Gram-negative bacterial growth by targeting extracellular epitopes.


Asunto(s)
Antibacterianos/farmacología , Anticuerpos Antibacterianos/farmacología , Anticuerpos Monoclonales/farmacología , Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Fluidez de la Membrana/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/inmunología , Membrana Celular/metabolismo , Escherichia coli/inmunología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/inmunología , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína
7.
Biophys J ; 119(3): 593-604, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32416080

RESUMEN

The MreB actin-like cytoskeleton assembles into dynamic polymers that coordinate cell shape in many bacteria. In contrast to most other cytoskeleton systems, few MreB-interacting proteins have been well characterized. Here, we identify a small protein from Caulobacter crescentus, an assembly inhibitor of MreB (AimB). AimB overexpression mimics inhibition of MreB polymerization, leading to increased cell width and MreB delocalization. Furthermore, aimB appears to be essential, and its depletion results in decreased cell width and increased resistance to A22, a small-molecule inhibitor of MreB assembly. Molecular dynamics simulations suggest that AimB binds MreB at its monomer-monomer protofilament interaction cleft and that this interaction is favored for C. crescentus MreB over Escherichia coli MreB because of a closer match in the degree of opening with AimB size, suggesting coevolution of AimB with MreB conformational dynamics in C. crescentus. We support this model through functional analysis of point mutants in both AimB and MreB, photo-cross-linking studies with site-specific unnatural amino acids, and species-specific activity of AimB. Together, our findings are consistent with AimB promoting MreB dynamics by inhibiting monomer-monomer assembly interactions, representing a new mechanism for regulating actin-like polymers and the first identification of a non-toxin MreB assembly inhibitor. Because AimB has only 104 amino acids and small proteins are often poorly characterized, our work suggests the possibility of more bacterial cytoskeletal regulators to be found in this class. Thus, like FtsZ and eukaryotic actin, MreB may have a rich repertoire of regulators to tune its precise assembly and dynamics.


Asunto(s)
Caulobacter crescentus , Proteínas de Escherichia coli , Actinas , Proteínas Bacterianas/genética , Caulobacter crescentus/genética , Tamaño de la Célula , Citoesqueleto , Proteínas de Escherichia coli/genética
8.
PLoS Comput Biol ; 15(4): e1006683, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30951524

RESUMEN

The actin family of cytoskeletal proteins is essential to the physiology of virtually all archaea, bacteria, and eukaryotes. While X-ray crystallography and electron microscopy have revealed structural homologies among actin-family proteins, these techniques cannot probe molecular-scale conformational dynamics. Here, we use all-atom molecular dynamic simulations to reveal conserved dynamical behaviors in four prokaryotic actin homologs: MreB, FtsA, ParM, and crenactin. We demonstrate that the majority of the conformational dynamics of prokaryotic actins can be explained by treating the four subdomains as rigid bodies. MreB, ParM, and FtsA monomers exhibited nucleotide-dependent dihedral and opening angles, while crenactin monomer dynamics were nucleotide-independent. We further show that the opening angle of ParM is sensitive to a specific interaction between subdomains. Steered molecular dynamics simulations of MreB, FtsA, and crenactin dimers revealed that changes in subunit dihedral angle lead to intersubunit bending or twist, suggesting a conserved mechanism for regulating filament structure. Taken together, our results provide molecular-scale insights into the nucleotide and polymerization dependencies of the structure of prokaryotic actins, suggesting mechanisms for how these structural features are linked to their diverse functions.


Asunto(s)
Actinas/química , Proteínas Bacterianas/química , Biología Computacional , Cristalografía por Rayos X , Proteínas del Citoesqueleto/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Pyrobaculum/química , Homología Estructural de Proteína
9.
Proc Natl Acad Sci U S A ; 113(11): E1565-74, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929379

RESUMEN

Gram-negative bacteria balance synthesis of the outer membrane (OM), cell wall, and cytoplasmic contents during growth via unknown mechanisms. Here, we show that a dominant mutation (designated mlaA*, maintenance of lipid asymmetry) that alters MlaA, a lipoprotein that removes phospholipids from the outer leaflet of the OM of Escherichia coli, increases OM permeability, lipopolysaccharide levels, drug sensitivity, and cell death in stationary phase. Surprisingly, single-cell imaging revealed that death occurs after protracted loss of OM material through vesiculation and blebbing at cell-division sites and compensatory shrinkage of the inner membrane, eventually resulting in rupture and slow leakage of cytoplasmic contents. The death of mlaA* cells was linked to fatty acid depletion and was not affected by membrane depolarization, suggesting that lipids flow from the inner membrane to the OM in an energy-independent manner. Suppressor analysis suggested that the dominant mlaA* mutation activates phospholipase A, resulting in increased levels of lipopolysaccharide and OM vesiculation that ultimately undermine the integrity of the cell envelope by depleting the inner membrane of phospholipids. This novel cell-death pathway suggests that balanced synthesis across both membranes is key to the mechanical integrity of the Gram-negative cell envelope.


Asunto(s)
Pared Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Metabolismo de los Lípidos/genética , Fosfolípidos/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ácidos Grasos/metabolismo , Lipopolisacáridos/metabolismo , Magnesio/metabolismo , Magnesio/farmacología , Mutación , Permeabilidad , Fosfolipasas A1/metabolismo
10.
BMC Biol ; 15(1): 17, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28222723

RESUMEN

BACKGROUND: The determination and regulation of cell morphology are critical components of cell-cycle control, fitness, and development in both single-cell and multicellular organisms. Understanding how environmental factors, chemical perturbations, and genetic differences affect cell morphology requires precise, unbiased, and validated measurements of cell-shape features. RESULTS: Here we introduce two software packages, Morphometrics and BlurLab, that together enable automated, computationally efficient, unbiased identification of cells and morphological features. We applied these tools to bacterial cells because the small size of these cells and the subtlety of certain morphological changes have thus far obscured correlations between bacterial morphology and genotype. We used an online resource of images of the Keio knockout library of nonessential genes in the Gram-negative bacterium Escherichia coli to demonstrate that cell width, width variability, and length significantly correlate with each other and with drug treatments, nutrient changes, and environmental conditions. Further, we combined morphological classification of genetic variants with genetic meta-analysis to reveal novel connections among gene function, fitness, and cell morphology, thus suggesting potential functions for unknown genes and differences in modes of action of antibiotics. CONCLUSIONS: Morphometrics and BlurLab set the stage for future quantitative studies of bacterial cell shape and intracellular localization. The previously unappreciated connections between morphological parameters measured with these software packages and the cellular environment point toward novel mechanistic connections among physiological perturbations, cell fitness, and growth.


Asunto(s)
Escherichia coli/citología , Escherichia coli/genética , Técnicas de Inactivación de Genes , Biblioteca de Genes , Genoma Bacteriano , Simulación por Computador , Eliminación de Gen , Imagenología Tridimensional , Microscopía Fluorescente , Reproducibilidad de los Resultados
11.
Mol Biol Cell ; : mbcE23110446, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083352

RESUMEN

The key bacterial cell division protein FtsZ can adopt multiple conformations and prevailing models suggest that transitions from the closed to open state are necessary for filament formation and stability. Using all-atom molecular dynamics simulations, we analyzed state transitions of Staphylococcus aureus FtsZ as a monomer, dimer, and hexamer. We found that monomers can adopt intermediate states but preferentially adopt a closed state that is robust to forced re-opening. Dimer subunits transitioned between open and closed states, and dimers with both subunits in the closed state remained highly stable, suggesting that open-state conformations are not necessary for filament formation. Mg2+ strongly stabilized the conformation of GTP-bound subunits and the dimer filament interface. Our hexamer simulations indicate that the plus end subunit preferentially closes and that other subunits can transition between states without affecting inter-subunit stability. We found that rather than being correlated with subunit opening, inter-subunit stability was strongly correlated with catalytic site interactions. By leveraging deep-learning models, we identified key intra-subunit interactions governing state transitions. Our findings suggest a greater range of possible monomer and filament states than previously considered, and offer new insights into the nuanced interplay between subunit states and the critical role of nucleotide hydrolysis and Mg2+ in FtsZ filament dynamics.

12.
bioRxiv ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39211277

RESUMEN

Human gut commensal bacteria are routinely exposed to various stresses, including therapeutic drugs, and collateral effects are difficult to predict. To systematically interrogate community-level effects of drug perturbations, we screened stool-derived in vitro communities with 707 clinically relevant small molecules. Across ∼5,000 community-drug interaction conditions, compositional and metabolomic responses were predictably impacted by nutrient competition, with certain species exhibiting improved growth due to adverse impacts on competitors. Changes to community composition were generally reversed by reseeding with the original community, although occasionally species promotion was long-lasting, due to higher-order interactions, even when the competitor was reseeded. Despite strong selection pressures, emergence of resistance within communities was infrequent. Finally, while qualitative species responses to drug perturbations were conserved across community contexts, nutrient competition quantitatively affected their abundances, consistent with predictions of consumer-resource models. Our study reveals that quantitative understanding of the interaction landscape, particularly nutrient competition, can be used to anticipate and potentially mitigate side effects of drug treatment on the gut microbiota.

13.
Curr Opin Cell Biol ; 81: 102170, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37119759

RESUMEN

Bacterial cells are regularly confronted with simultaneous changes in environmental nutrient supply and osmolarity. Despite the importance of osmolarity and osmoregulation in bacterial physiology, the relationship between the cellular response to osmotic perturbations and other stresses has remained largely unexplored. Bacteria cultured in hyperosmotic conditions and bacteria experiencing nutrient stress exhibit similar physiological changes, including metabolic shutdown, increased protein instability, dehydration, and condensation of chromosomal DNA. In this review, we highlight overlapping molecular players between osmotic and nutrient stresses. These connections between two seemingly disparate stress response pathways reinforce the importance of central carbon metabolism as a control point for diverse aspects of homeostatic regulation. We identify important open questions for future research, emphasizing the pressing need to develop and exploit new methods for probing how osmolarity affects phylogenetically diverse species.


Asunto(s)
Bacterias , Osmorregulación , Bacterias/metabolismo , Nutrientes , Proteínas Bacterianas/metabolismo , Estrés Fisiológico
14.
Nat Commun ; 14(1): 2098, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055390

RESUMEN

Much remains to be explored regarding the diversity of uncultured, host-associated microbes. Here, we describe rectangular bacterial structures (RBSs) in the mouths of bottlenose dolphins. DNA staining revealed multiple paired bands within RBSs, suggesting the presence of cells dividing along the longitudinal axis. Cryogenic transmission electron microscopy and tomography showed parallel membrane-bound segments that are likely cells, encapsulated by an S-layer-like periodic surface covering. RBSs displayed unusual pilus-like appendages with bundles of threads splayed at the tips. We present multiple lines of evidence, including genomic DNA sequencing of micromanipulated RBSs, 16S rRNA gene sequencing, and fluorescence in situ hybridization, suggesting that RBSs are bacterial and distinct from the genera Simonsiella and Conchiformibius (family Neisseriaceae), with which they share similar morphology and division patterning. Our findings highlight the diversity of novel microbial forms and lifestyles that await characterization using tools complementary to genomics such as microscopy.


Asunto(s)
Delfín Mular , Neisseriaceae , Animales , ARN Ribosómico 16S/genética , Hibridación Fluorescente in Situ , Neisseriaceae/genética , Boca , Estructuras Bacterianas
15.
Comput Struct Biotechnol J ; 20: 5838-5846, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382191

RESUMEN

Filament formation by cytoskeletal proteins is critical to their involvement in myriad cellular processes. The bacterial actin homolog MreB, which is essential for cell-shape determination in many rod-shaped bacteria, has served as a model system for studying the mechanics of cytoskeletal filaments. Previous molecular dynamics (MD) simulations revealed that the twist of MreB double protofilaments is dependent on the bound nucleotide, as well as binding to the membrane or the accessory protein RodZ, and MreB mutations that modulate twist also affect MreB spatial organization and cell shape. Here, we show that MreB double protofilaments can adopt multiple twist states during microsecond-scale MD simulations. A deep learning algorithm trained only on high- and low-twist states robustly identified all twist conformations across most perturbations of ATP-bound MreB, suggesting the existence of a conserved set of states whose occupancy is affected by each perturbation to MreB. Simulations replacing ATP with ADP indicated that twist states were generally stable after hydrolysis. These findings suggest a rich twist landscape that could provide the capacity to tune MreB activity and therefore its effects on cell shape.

16.
iScience ; 25(4): 103907, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35340431

RESUMEN

While microbial communities inhabit a wide variety of complex natural environments, in vitro culturing enables highly controlled conditions and high-throughput interrogation for generating mechanistic insights. In vitro assemblies of gut commensals have recently been introduced as models for the intestinal microbiota, which plays fundamental roles in host health. However, a protocol for 16S rRNA sequencing and analysis of in vitro samples that optimizes financial cost, time/effort, and accuracy/reproducibility has yet to be established. Here, we systematically identify protocol elements that have significant impact, introduce bias, and/or can be simplified. Our results indicate that community diversity and composition are generally unaffected by substantial protocol streamlining. Additionally, we demonstrate that a strictly aerobic halophile is an effective spike-in for estimating absolute abundances in communities of anaerobic gut commensals. This time- and money-saving protocol should accelerate discovery by increasing 16S rRNA data reliability and comparability and through the incorporation of absolute abundance estimates.

17.
Front Microbiol ; 12: 718600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489908

RESUMEN

Bacterial cells in their natural environments encounter rapid and large changes in external osmolality. For instance, enteric bacteria such as Escherichia coli experience a rapid decrease when they exit from host intestines. Changes in osmolality alter the mechanical load on the cell envelope, and previous studies have shown that large osmotic shocks can slow down bacterial growth and impact cytoplasmic diffusion. However, it remains unclear how cells maintain envelope integrity and regulate envelope synthesis in response to osmotic shocks. In this study, we developed an agarose pad-based protocol to assay envelope stiffness by measuring population-averaged cell length before and after a hyperosmotic shock. Pad-based measurements exhibited an apparently larger length change compared with single-cell dynamics in a microfluidic device, which we found was quantitatively explained by a transient increase in division rate after the shock. Inhibiting cell division led to consistent measurements between agarose pad-based and microfluidic measurements. Directly after hyperosmotic shock, FtsZ concentration and Z-ring intensity increased, and the rate of septum constriction increased. These findings establish an agarose pad-based protocol for quantifying cell envelope stiffness, and demonstrate that mechanical perturbations can have profound effects on bacterial physiology.

18.
Nat Commun ; 12(1): 1975, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785742

RESUMEN

The steady-state size of bacterial cells correlates with nutrient-determined growth rate. Here, we explore how rod-shaped bacterial cells regulate their morphology during rapid environmental changes. We quantify cellular dimensions throughout passage cycles of stationary-phase cells diluted into fresh medium and grown back to saturation. We find that cells exhibit characteristic dynamics in surface area to volume ratio (SA/V), which are conserved across genetic and chemical perturbations as well as across species and growth temperatures. A mathematical model with a single fitting parameter (the time delay between surface and volume synthesis) is quantitatively consistent with our SA/V experimental observations. The model supports that this time delay is due to differential expression of volume and surface-related genes, and that the first division after dilution occurs at a tightly controlled SA/V. Our minimal model thus provides insight into the connections between bacterial growth rate and cell shape in dynamic environments.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica , Proteómica/métodos , Algoritmos , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Proteínas Bacterianas/genética , División Celular/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Cinética , Modelos Teóricos , Propiedades de Superficie
19.
mBio ; 12(5): e0256121, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34634934

RESUMEN

CRISPR interference (CRISPRi) has facilitated the study of essential genes in diverse organisms using both high-throughput and targeted approaches. Despite the promise of this technique, no comprehensive arrayed CRISPRi library targeting essential genes exists for the model bacterium Escherichia coli, or for any Gram-negative species. Here, we built and characterized such a library. Each of the ∼500 strains in our E. coli library contains an inducible, chromosomally integrated single guide RNA (sgRNA) targeting an essential (or selected nonessential) gene and can be mated with a pseudo-Hfr donor strain carrying a dcas9 cassette to create a CRISPRi knockdown strain. Using this system, we built an arrayed library of CRISPRi strains and performed population and single-cell growth and morphology measurements as well as targeted follow-up experiments. These studies found that inhibiting translation causes an extended lag phase, identified new modulators of cell morphology, and revealed that the morphogene mreB is subject to transcriptional feedback regulation, which is critical for the maintenance of morphology. Our findings highlight canonical and noncanonical roles for essential genes in numerous aspects of cellular homeostasis. IMPORTANCE Essential genes make up only ∼5 to 10% of the genetic complement in most organisms but occupy much of their protein synthesis and account for almost all antibiotic targets. Despite the importance of essential genes, their intractability has, until recently, hampered efforts to study them. CRISPRi has facilitated the study of essential genes by allowing inducible and titratable depletion. However, all large-scale CRISPRi studies in Gram-negative bacteria thus far have used plasmids to express CRISPRi components and have been constructed in pools, limiting their utility for targeted assays and complicating the determination of antibiotic effects. Here, we use a modular method to construct an arrayed library of chromosomally integrated CRISPRi strains targeting the essential genes of the model bacterium Escherichia coli. This library enables targeted studies of essential gene depletions and high-throughput determination of antibiotic targets and facilitates studies targeting the outer membrane, an essential component that serves as the major barrier to antibiotics.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli/genética , Técnicas de Silenciamiento del Gen/métodos , Biblioteca de Genes , Genes Esenciales/genética , Transcripción Genética , Proteínas Bacterianas/metabolismo , Ensayos Analíticos de Alto Rendimiento
20.
Trends Endocrinol Metab ; 31(11): 805-807, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32475653

RESUMEN

Despite their small sizes, bacterial cells within a host-associated microbial community often form highly structured complexes determined by environmental factors and interspecies interactions. Wilbert et al. combined species-specific fluorescent labels and high-resolution microscopy to visualize human tongue dorsum microbiomes and to highlight their structure and dynamics.


Asunto(s)
ARN Ribosómico 16S/metabolismo , Lengua/microbiología , Humanos , Hibridación Fluorescente in Situ , Microbiota/genética , Microbiota/fisiología , Microscopía , Microscopía Fluorescente , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA