Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 11(39): 5243-52, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26265205

RESUMEN

A nanostructured carbon with high specific surface area (SSA), tunable pore structure, superior electrical conductivity, mechanically robust framework, and high chemical stability is an important requirement for electrochemical energy storage. Porous graphene fabricated by chemical activation and liquid etching has a high surface area but very limited volume of electrochemically accessible mesopores. Herein, an effective strategy of in situ formation of hierarchically mesoporous oxide templates with small pores induced by Kirkendall diffusion and large pores attributed to evaporation of deliberately introduced volatile metal is proposed for chemical vapor deposition assembly of porous graphene frameworks (PGFs). The PGFs inherit the hierarchical mesoporous structure of the templates. A high SSA of 1448 m(2) g(-1), 91.6% of which is contributed by mesopores, and a mesopore volume of 2.40 cm(3) g(-1) are attained for PGFs serving as reservoirs of ions or active materials in electrochemical energy storage applications. When the PGFs are applied in lithium-sulfur batteries, a very high sulfur utilization of 71% and a very low fading rate of ≈0.04% per cycle after the second cycle are achieved at a current rate of 1.0 C. This work provides a general strategy for the rational construction of mesoporous structures induced by a volatile metal, with a view toward the design of hierarchical nanomaterials for advanced energy storage.

2.
Adv Mater ; 28(11): 2155-62, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26754639

RESUMEN

A nanostructured lithium-metal anode employing an unstacked graphene "drum" and dual-salt electrolyte brings about a dendrite-free lithium depositing morphology. On the one hand, the unstacked graphene framework with ultrahigh specific surface area guarantees an ultralow local current density that prevents the growth of lithium dendrites. On the other hand, the stable, flexible, and compact solid electrolyte interphase layer induced by the dual-salt electrolyte protects the deposited lithium layers.

3.
Adv Mater ; 28(43): 9551-9558, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27629655

RESUMEN

A cooperative interface constructed by "lithiophilic" nitrogen-doped graphene frameworks and "sulfiphilic" nickel-iron layered double hydroxides (LDH@NG) is proposed to synergistically afford bifunctional Li and S binding to polysulfides, suppression of polysulfide shuttles, and electrocatalytic activity toward formation of lithium sulfides for high-performance lithium-sulfur batteries. LDH@NG enables high rate capability, long lifespan, and efficient stabilization of both sulfur and lithium electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA