Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Idioma
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 31(6): 1807-1816, 2020 Jun.
Artículo en Zh | MEDLINE | ID: mdl-34494731

RESUMEN

Water availability is the key factor limiting plant growth in arid regions. Populus simonii is a typical shelterbelt tree species in Zhangbei County, Hebei Province, with an important role in constructing ecological barrier. With stable isotope technique, graphical method, and multiple linear mixing model, we analyzed water sources and water use strategies of P. simonii in different growth periods with four different degrees of degradation (non-degraded, slightly degraded, modera-tely degraded and severely degraded) in Zhangbei County. Results would help improve our understanding on the cause and mechanism of the large-scale degradation of P. simonii in this area. The results showed that water sources of P. simonii in the early growth stage (May-June) from all four degradation degrees were relatively simple. P. simonii mainly used soil water in 0-40 cm, with the utilization rates being 34.2%, 50.1%, 41.6%, and 55.7% for the four degradation degrees, respectively. At the middle growth stage (July-August), non-degraded P. simonii utilized soil water from layers of 200-280 cm and 280-400 cm, with utilization rates of 20.2% and 30.9%, respectively. Soil water at 200-280 cm and 280-400 cm layers was utilized by slightly degraded poplar, with the contribution rates of each layer being 33.2% and 27.9%, respectively. Moderately degraded P. simonii utilized soil water from the depths of 0-40 cm and 40-120 cm, with the rates of 30% and 26.9%, respectively. Water utilization rate of severely degraded P. simonii to 0-40 cm depth was 55.4%. At the late growth stage (September-October), water sources of non-degraded P. simonii transferred to the upper-middle soil layers, with the utilization rate of 0-40 cm, 40-80 cm, and 80-120 cm being 23.3%, 17.2%, and 16.5%, respectively. The utilization rate of the slightly degraded P. simonii was 35.7% at 0-40 cm and 20.6% at 80-200 cm. The moderately and severely degraded P. simonii mainly utilized soil water at 0-40 cm layer, with the contribution rates of soil water being 43.7% and 51.8%, respectively. With the exacerbation of degradation, the main water source of P. simonii gradually transferred from deep to surface soil water.


Asunto(s)
Populus , Isótopos , Suelo , Árboles , Agua
2.
Ying Yong Sheng Tai Xue Bao ; 31(6): 1827-1834, 2020 Jun.
Artículo en Zh | MEDLINE | ID: mdl-34494733

RESUMEN

Clarifying 18O isotope composition of leaf water (δL,b) would provide theoretical refe-rence for the study of leaf physiology and forest hydrology. We continuously monitored the concentration of atmospheric water vapor (Wa) and 18O isotope composition of atmospheric water vapor (δv) at the canopy of Platycladus lateralis plantation in the mountain area of Beijing. We analyzed the effects of kinetic fractionation coefficients Δk1(32%) and Δk2(28%) on the prediction of δL,b by combining the measured leaf water 18O isotope (δx) and δL,b of P. lateralis. The results showed that the diurnal variation of Wa was irregular. Atmospheric relative humidity (RH) showed a "V" shape of diurnal variation, and stomatal conductance (gs) increased first and then decreased at the diurnal scale. Wa, RH, and gs showed a significant negative correlation with δL,b when isotopes approached a steady-state equilibrium around noon. The kinetic fractionation coefficient Δk1 and Δk2 were applied to the Craig-Gordon model to predict δL,b under the isotopic quasi-steady-state condition. The results showed that the predicted values of Δk2 approached the observed values of δL,b. This result indicated that the application of Δk2 to the model was more consistent with the change of water isotope concentration in the leaves of P. lateralis in the mountain area of Beijing. These results would improve our understanding of water isotope enrichment model and evapotranspiration resolution model in leaves.


Asunto(s)
Hojas de la Planta , Agua , Cinética , Isótopos de Oxígeno/análisis , Hojas de la Planta/química , Vapor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA