Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 45(6): e2300613, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38157222

RESUMEN

Hydrogels are ideal materials for flexible electronic devices based on their smooth ion channels and considerable mechanical flexibility. A substantial volume of aqueous solution is required to enable the smooth flow of ions, resulting in the agony of low-temperature freezing; besides, long-term exposure to bending/tensile tress triggers fatigue issues. Therefore, it is a great challenge to prepare hydrogels with both freeze-resistance and long-term durability. Herein, a polyacrylic acid-based hydrogel with both hydrophobic interaction and dynamic reversible covalent bonding cross-linking networks is preparing (DC-hydrogel) by polymerizing a bi-functional imidazole-type ionic liquid monomer with integrated disulfide and alkene bonds (DS/DB-IL) and an octadecyl methacrylate, achieving self-healing. The DS/DB-IL anchored into the polymer backbone has a high affinity with water, reducing the freezing point of water, while the DS/DB-IL with free ions provides superior ionic conductivity to the DC-hydrogel. The polyacrylic acid with abundant carboxyl gives hydrogel good self-adhesiveness to different substrates. Ionotronics with resistance-type sensors with stable output performance are fabricated and explored its application to joint motion and health information. Moreover, hydrogel-based sensing arrays with high resolution and accuracy are fabricated to identify 2D distribution of stress. The hydrogels have great promise for various ionotronics in many fields.


Asunto(s)
Alquenos , Hidrogeles , Disulfuros , Conductividad Eléctrica , Agua
2.
Polymers (Basel) ; 16(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399919

RESUMEN

The emergence of novel e-textile materials that combine the inherent qualities of the textile substrate (lightweight, soft, breathable, durable, etc.) with the functionality of micro/nano-electronic materials (conductive, dielectric, sensing, etc.) has resulted in a trend toward miniaturization, integration, and intelligence in new electronic devices. However, the formation of a conductive network by micro/nano-conductive materials on textiles necessitates high-temperature sintering, which inevitably causes substrate aging and component damage. Herein, a bis-hydroxy-imidazolium chloride salt as a hard segment to synthesize a waterborne polyurethane (WPU) adhesive is designed and prepared. When used in nano-silver-based printing coatings, it offers strong adherence for coatings, reaching 16 N cm-1; on the other hand, the introduction of chloride ions enables low-temperature (60 °C) chemical sintering to address the challenge of secondary treatment and high-temperature sintering (>150 °C). Printed into flexible circuits, the resistivity can be controlled by the content of imidazolium salts anchored in the molecular chain of the WPU from a maximum resistivity of 3.1 × 107 down to 5.8 × 10-5 Ω m, and it can conduct a Bluetooth-type finger pulse detector with such low resistivity. As a flexible circuit, it also offers high stability against washing and adhesion, which the resistivity only reduces less than 20% after washing 10 times and adhesion. Owing to the adjustability of the resistivity, we fabricated an all-textile flexible pressure sensor that accurately differentiates different external pressures (min. 10 g, ~29 Pa), recognizes forms, and detects joint motions (finger bending and wrist flexion).

3.
Integr Zool ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030865

RESUMEN

The intricate process of shell biomineralization in marine molluscs is governed by a complex interplay of regulatory elements, encompassing secretomes, transporters, and noncoding RNA. This review delves into recent advancements in understanding these regulatory mechanisms, emphasizing their significance in elucidating the functions and evolutionary dynamics of the molluscan shell biomineralization process. Central to this intricate orchestration are secretomes with diverse functional domains, selectively exported to the extrapallial space, which directly regulate crystal growth and morphology. Transporters are crucial for substrate transportation in the calcification and maintenance of cellular homeostasis. Beyond proteins and transporters, noncoding RNA molecules are integral components influencing shell biomineralization. This review underscores the nonnegligible roles played by these genetic elements at the molecular level. To comprehend the complexity of biomineralization in mollusc, we explore the origin and evolutionary history of regulatory elements, primarily secretomes. While some elements have recently evolved, others are ancient genes that have been co-opted into the biomineralization toolkit. These elements undergo structural and functional evolution through rapidly evolving repetitive low-complexity domains and domain gain/loss/rearrangements, ultimately shaping a distinctive set of secretomes characterized by both conserved features and evolutionary innovations. This comprehensive review enhances our understanding of molluscan biomineralization at the molecular and genetic levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA