Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Orthop Relat Res ; 477(12): 2785-2797, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31764352

RESUMEN

BACKGROUND: Osteoarthritis (OA) is characterized by degeneration of articular cartilage. Studies have found that enhancement of autophagy, an intracellular catabolic process, may limit the pathologic progression of OA. Chloramphenicol is a potent activator of autophagy; however, the effects of chloramphenicol on articular cartilage are unknown. QUESTIONS/PURPOSES: Using human OA knee chondrocytes in vitro, we asked, does chloramphenicol (1) activate autophagy in chondrocytes; (2) protect chondrocytes from IL-1ß-induced apoptosis; and (3) reduce the expression of matrix metallopeptidase (MMP)-13 and IL-6 (markers associated with articular cartilage degradation and joint inflammation). Using an in vivo rabbit model of OA, we asked, does an intra-articular injection of chloramphenicol in the knee (4) induce autophagy; (5) reduce OA severity; and (6) reduce MMP-13 expression? METHODS: Human chondrocytes were extracted from 10 men with OA undergoing TKA. After treatment with 25 µg/mL, 50 µg/mL, or 100µg/mL chloramphenicol, the autophagy of chondrocytes was detected with Western blotting, transmission electron microscopy, or an autophagy detection kit. There were four groups in our study: one group was untreated, one was treated with 100 µg/mL chloramphenicol, another was treated with 10 ng/mL of IL-1ß, and the final group was treated with 10 ng/mL of IL-1ß and 100 µg/mL of chloramphenicol. All groups were treated for 48 hours; cell apoptosis was detected with Western blotting and flow cytometry. Inflammation marker IL-6 in the cell culture supernatant was detected with an ELISA. Articular cartilage degradation-related enzyme MMP-13 was analyzed with Western blotting. A rabbit model of OA was induced by intra-articular injection of type II collagenase in 20 male 3-month-old New Zealand White rabbits' right hind leg knees; the left hind leg knees served as controls. Rabbits were treated by intra-articular injection of saline or chloramphenicol once a week for 8 weeks. Autophagy of the articular cartilage was detected with Western blotting and transmission electron microscopy. Degeneration of articular cartilage was analyzed with Safranin O-fast green staining and the semi-quantitative index Osteoarthritis Research Society International (OARSI) grading system. Degeneration of articular cartilage was evaluated using the OARSI grading system. The expression of MMP-13 in articular cartilage was detected with immunohistochemistry. RESULTS: Chloramphenicol activated autophagy in vitro in the chondrocytes of humans with OA and in an in vivo rabbit model of OA. Chloramphenicol inhibited IL-1-induced apoptosis (flow cytometry results with chloramphenicol, 25.33 ± 3.51%, and without chloramphenicol, 44.00 ± 3.61%, mean difference, 18.67% [95% CI 10.60 to 26.73]; p = 0.003) and the production of proinflammatory cytokine IL-6 (ELISA results, with chloramphenicol, 720.00 ± 96.44 pg/mL, without chloramphenicol, 966.67 ± 85.05 pg/mL; mean difference 74.24 pg/mL [95% CI 39.28 to 454.06]; p = 0.029) in chondrocytes. After chloramphenicol treatment, the severity of cartilage degradation was reduced in the treatment group (OARSI 6.80 ± 2.71) compared with the control group (12.30 ± 2.77), (mean difference 5.50 [95% CI 1.50 to 9.50]; p = 0.013). Furthermore, chloramphenicol treatment also decreased the production of MMP-13 in vitro and in vivo. CONCLUSIONS: Chloramphenicol reduced the severity of cartilage degradation in a type II collagen-induced rabbit model of OA, which may be related to induction of autophagy and inhibition of MMP-13 and IL-6. CLINICAL RELEVANCE: Our study suggests that an intra-articular injection of chloramphenicol may reduce degeneration of articular cartilage and that induction of autophagy may be a method for treating OA. The animal model we used was type II collagen-induced OA, which was different from idiopathic OA and post-traumatic OA. Therefore, we need to use other types of OA models (idiopathic OA or a surgically induced OA model) to further verify its effect, and the side effects of chloramphenicol also need to be considered, such as myelosuppression.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Cloranfenicol/administración & dosificación , Condrocitos/patología , Osteoartritis de la Rodilla/tratamiento farmacológico , Anciano , Animales , Antibacterianos/administración & dosificación , Apoptosis/efectos de los fármacos , Cartílago Articular/patología , Supervivencia Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Inyecciones Intraarticulares , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/patología , Conejos
2.
Front Cell Dev Biol ; 11: 1062229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866277

RESUMEN

Advanced glycation end-products (AGEs) can boost their receptor of AGE (RAGE) expression through the downstream signaling pathway to facilitate AGE-RAGE interaction. In this regulation process, the primary signaling pathways are NF-κB and STAT3. However, the inhibition of these transcription factors cannot completely block the upregulation of RAGE, which indicates AGEs may also impact RAGE expression via other pathways. In this study, we revealed that AGEs can exhibit epigenetic impacts on RAGE expression. Here, we used carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL) to treat liver cells and discovered that AGEs can promote the demethylation of the RAGE promoter region. To verify this epigenetic modification, we employed dCAS9-DNMT3a with sgRNA to specifically modify the RAGE promoter region against the effect of carboxymethyl-lysine and carboxyethyl-lysine. The elevated RAGE expressions were partially repressed after AGE-induced hypomethylation statuses were reversed. Additionally, TET1 were also upregulated in AGE-treated cells, indicating AGEs may epigenetically modulate RAGE through the elevating TET1 level.

3.
Clin Epigenetics ; 15(1): 37, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864492

RESUMEN

BACKGROUND: Despite its inconsistent response rate, decitabine, a demethylating agent, is often used as a non-intensive alternative therapeutic agent for acute myeloid leukemia (AML). It has been reported that relapsed/refractory AML patients with t(8;21) translocation achieved better clinical outcomes with a decitabine-based combination regimen than other AML subtypes; however, the mechanisms underlying this phenomenon remain unknown. Herein, the DNA methylation landscape of de novo patients with the t(8;21) translocation was compared with that of patients without the translocation. Moreover, the methylation changes induced by decitabine-based combination regimens in de novo/complete remission paired samples were investigated to elucidate the mechanisms underlying the better responses observed in t(8;21) AML patients treated with decitabine. METHODS: Thirty-three bone marrow samples from 28 non-M3 AML patients were subjected to DNA methylation sequencing to identify the differentially methylated regions and genes of interest. TCGA-AML Genome Atlas-AML transcriptome dataset was used to identify decitabine-sensitive genes that were downregulated following exposure to a decitabine-based regimen. In addition, the effect of decitabine-sensitive gene on cell apoptosis was examined in vitro using Kasumi-1 and SKNO-1 cells. RESULTS: A total of 1377 differentially methylated regions that specifically responsive to decitabine in t(8;21) AML were identified, of which 210 showed hypomethylation patterns following decitabine treatment aligned with the promoter regions of 72 genes. And the methylation-silencing genes, LIN7A, CEBPA, BASP1, and EMB were identified as critical decitabine-sensitive genes in t(8;21) AML. Moreover, AML patients with hypermethylated LIN7A and reduced LIN7A expression had poor clinical outcomes. Meanwhile, the downregulation of LIN7A inhibited decitabine/cytarabine combination treatment-induced apoptosis in t(8;21) AML cells in vitro. CONCLUSION: The findings of this study suggest that LIN7A is a decitabine-sensitive gene in t(8;21) AML patients that may serve as a prognostic biomarker for decitabine-based therapy.


Asunto(s)
Metilación de ADN , Leucemia Mieloide Aguda , Humanos , Decitabina/farmacología , Decitabina/uso terapéutico , Genes Reguladores , Silenciador del Gen , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas de la Membrana , Proteínas de Transporte Vesicular
4.
Front Med (Lausanne) ; 9: 1028575, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465935

RESUMEN

Osteoarthritis (OA) is characterized by the degeneration of articular cartilage. Decreased autophagy is tightly associated with chondrocyte death, which contributes to the progression of OA. Thus, pharmacological activation of autophagy may be a promising therapeutic approach for OA. Here, we discovered that clioquinol, an antibiotic, significantly induces autophagy in OA chondrocytes from human tissue and rabbit model. Meanwhile, clioquinol can also augment the expression of extracellular matrix (ECM) components and suppress inflammatory mediators to improve OA microenvironment. Intra-articular injection of clioquinol can greatly prevent or slow down the development of this disease in a trauma-induced rabbit model of osteoarthritis. Such protective effect induced by clioquinol was at least in part explained by decreasing chondrocyte apoptosis and increasing autophagy. This study reveals the therapeutic potential of clioquinol in OA treatment.

5.
Artículo en Inglés | MEDLINE | ID: mdl-34504531

RESUMEN

Pulse lavage (PL) debridement and ultrasound are both known to be the treatment of biofilm-related periprosthetic joint infection (PJI). However, the efficacy of these in combination is unknown in eradicating biofilm from the orthopaedic metal implant surface. This study was conducted to understand the efficacy of PL and ultrasound in combination in eradicating bacterial biofilms on titanium alloy in vitro. Biofilms of Staphylococcus aureus strains were grown on titanium alloy coupons for 24 h. Then, the coupons were taken to each treatment group: (i) debrided with PL, (ii) exposed to ultrasound, or (iii) exposed to both. An untreated biofilm was set as a control group. Viable plate count and confocal microscopy using live/dead staining was used to measure the amount of biofilm. Viable plate count showed an approximate two-log reduction in CFU/cm2 in PL alone, from an initial cell count on the mental surface of approximately 109 CFU/cm2. The ultrasound caused an approximate seven-log reduction, and the combination group eradicated viable biofilm bacteria completely. Confocal imaging corroborated the CFU data. Our results indicate that PL and ultrasound both are remarkably in eradicating biofilm, and the combination of PL and ultrasound is more effective than alone in reducing biofilm.

6.
PLoS One ; 7(8): e43631, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952725

RESUMEN

The Lymphoid specific tyrosine phosphatase (Lyp) has elicited tremendous research interest due to the high risk of its missense mutation R620W in a wide spectrum of autoimmune diseases. While initially characterized as a gain-of-function mutant, R620W was thought to lead to autoimmune diseases through loss-of-function in T cell signaling by a recent study. Here we investigate the biochemical characters and T cell signaling functions of two uncharacterized Lyp variants S201F and R266W, together with a previously characterized Lyp variant R263Q, which had reduced risk in several autoimmune diseases, including systemic lupus erythematosus (SLE), ulcerative colitis (UC) and rheumatoid arthritis (RA). Our kinetic and functional studies of R263Q polymorphism basically reproduced previous findings that it was a loss-of-function mutant. The other variant S201F reduced Lyp phosphatase activity moderately and decreased Lyp function in T cell slightly, while R266W severely impaired phosphatase activity and was a loss-of-function variant in T cell signaling. A combined kinetic and structure analysis suggests that the R266W variant may decrease its phosphatase activity through perturbing either the Q-loop or the WPD loop of Lyp. As both R266W and R263Q significantly change their phosphatase activity and T cell functions, future work could be considered to evaluate these mutants in a broader spectrum of autoimmune diseases.


Asunto(s)
Polimorfismo de Nucleótido Simple , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Humanos , Células Jurkat , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Nitrofenoles/química , Nitrofenoles/metabolismo , Fosfoproteínas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 22/química , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal/genética , Linfocitos T/citología , Linfocitos T/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA