Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1379602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812679

RESUMEN

Cancer remains a significant global health challenge, claiming nearly 10 million lives in 2020 according to the World Health Organization. In the quest for novel treatments, fungi, especially Aspergillus species, have emerged as a valuable source of bioactive compounds with promising anticancer properties. This study conducts a comprehensive bibliometric analysis to map the research landscape of Aspergillus in oncology, examining publications from 1982 to the present. We observed a marked increase in research activity starting in 2000, with a notable peak from 2005 onwards. The analysis identifies key contributors, including Mohamed GG, who has authored 15 papers with 322 citations, and El-Sayed Asa, with 14 papers and 264 citations. Leading countries in this research field include India, Egypt, and China, with King Saud University and Cairo University as the leading institutions. Prominent research themes identified are "endophyte," "green synthesis," "antimicrobial," "anti-cancer," and "biological activities," indicating a shift towards environmentally sustainable drug development. Our findings highlight the considerable potential of Aspergillus for developing new anticancer therapies and underscore the necessity for further research to harness these natural compounds for clinical use.

2.
J Immunol Res ; 2024: 9125398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304142

RESUMEN

Since the COVID-19 outbreak, the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) virus has evolved into variants with varied infectivity. Vaccines developed against COVID-19 infection have boosted immunity, but there is still uncertainty on how long the immunity from natural infection or vaccination will last. The present study attempts to outline the present level of information about the contagiousness and spread of SARS-CoV-2 variants of interest and variants of concern (VOCs). The keywords like COVID-19 vaccine types, VOCs, universal vaccines, bivalent, and other relevant terms were searched in NCBI, Science Direct, and WHO databases to review the published literature. The review provides an integrative discussion on the current state of knowledge on the type of vaccines developed against SARS-CoV-2, the safety and efficacy of COVID-19 vaccines concerning the VOCs, and prospects of novel universal, chimeric, and bivalent mRNA vaccines efficacy to fend off existing variants and other emerging coronaviruses. Genomic variation can be quite significant, as seen by the notable differences in impact, transmission rate, morbidity, and death during several human coronavirus outbreaks. Therefore, understanding the amount and characteristics of coronavirus genetic diversity in historical and contemporary strains can help researchers get an edge over upcoming variants.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , COVID-19/prevención & control
3.
Front Bioeng Biotechnol ; 11: 1324805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264582

RESUMEN

In recent times, nanoparticles have experienced a significant upsurge in popularity, primarily owing to their minute size and their remarkable ability to modify physical, chemical, and biological properties. This burgeoning interest can be attributed to the expanding array of biomedical applications where nanoparticles find utility. These nanoparticles, typically ranging in size from 10 to 100 nm, exhibit diverse shapes, such as spherical, discoidal, and cylindrical configurations. These variations are not solely influenced by the manufacturing processes but are also intricately linked to interactions with surrounding stabilizing agents and initiators. Nanoparticles can be synthesized through physical or chemical methods, yet the biological approach emerges as the most sustainable and eco-friendly alternative among the three. Among the various nanoparticle types, silver nanoparticles have emerged as the most encountered and widely utilized due to their exceptional properties. What makes the synthesis of silver nanoparticles even more appealing is the application of plant-derived sources as reducing agents. This approach not only proves to be cost-effective but also significantly reduces the synthesis time. Notably, silver nanoparticles produced through plant-mediated processes have garnered considerable attention in recent years due to their notable medicinal capabilities. This comprehensive review primarily delves into the diverse medicinal attributes of silver nanoparticles synthesized using plant-mediated techniques. Encompassing antimicrobial properties, cytotoxicity, wound healing, larvicidal effects, anti-angiogenesis activity, antioxidant potential, and antiplasmodial activity, the paper extensively covers these multifaceted roles. Additionally, an endeavor is made to provide an elucidated summary of the operational mechanisms underlying the pharmacological actions of silver nanoparticles.

4.
BioTechnologia (Pozn) ; 103(1): 5-18, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605380

RESUMEN

Background: MRSA and MLSB resistant S. aureus are known as important pathogens, which are responsible for many cases of both hospital and community-acquired infections worldwide. Studying drug discovery from plant sources is regarded as an important prevention strategy regarding these types of infections. Material and methods: Agar well diffusion method was performed for antimicrobial evaluation, LCMS technique used for identification of different compounds, molecular docking performed by application of i GEMDOCK for PBP2a and ERM to plant compounds, and its pharmacokinetic evaluation of ADMET through use of AdmetSAR. Results: Water extract was the most effective against resistant strains of Staphylococcus aureus. Twenty compounds belonging to phenols, flavonoids, organic acids, terpenoids groups were reported. Eighteen plant compounds passed in Lipinski's rule of five. i GEMDOCK revealed diferulic acid has the least binding energy -102.37 kcal/mole to penicillin-binding protein 2a and taxifolin has the least binding energy of -103.12 kcal/mole to erythromycin ribosomal methylase in comparison to control linezolid. These compounds raise the potential for developing potent inhibitors of penicillin-binding protein 2a and erythromycin ribosomal methylase for drug development. ADMET properties revealed that eighteen studied compounds were found in category III and IV with non-toxic properties except two butin and taxifolin found in category II with toxic properties. Conclusions: It can be concluded that diferulic acid and taxifolin compounds provide the best inhibitor effect to PBP2a and ERM protein for inhibition of MRSA and MLSB resistant strains of S. aureus through the application of molecular docking, leading to a lead drug candidate for the treatment of diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA