Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microscopy (Oxf) ; 72(1): 60-63, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36401875

RESUMEN

It is important to understand and control the fine structure of the fuel cell catalyst layer in order to improve the battery characteristics of the fuel cell. A major challenge in observing the microstructure of the catalyst layer by electron microscopy is the visualization of ionomers, which have low contrast and are susceptible to damage by electron beam irradiation. Previous papers have reported transmission electron microscopy (TEM) observations of ionomers neutralized with cesium (Cs) ions. However, this approach involves chemical reactions and indirect visualization of ionomers. In contrast, we have previously revealed the microstructure of ionomers in frozen catalyst inks by cryogenic (cryo) scanning electron microscopy and cryo-TEM. In general, ionomers are basically used under high-temperature and humid conditions while the fuel cell is operating. Therefore, in this study, ultrathin sections prepared from the fuel cell catalyst layer (membrane electrode assemblies) were incubated in a chamber under high-temperature and humid conditions and then rapidly frozen for observation by cryo-TEM. As a result, we succeeded in observing the pore structure of the catalyst layer in the swollen state of the ionomer. The swollen ionomer surrounded and enclosed the Pt/C aggregates and bridged over the pores in the catalyst layer.

2.
Microscopy (Oxf) ; 66(3): 204-208, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339813

RESUMEN

In order to improve the electricity generation performance of fuel cell electric vehicles, it is necessary to optimize the microstructure of the catalyst layer of a polymer electrolyte fuel cell. The catalyst layer is formed by a wet coating process using catalyst inks. Therefore, it is very important to observe the microstructure of the catalyst ink. In this study, the morphology of carbon-supported platinum (Pt/C) particles in catalyst inks with a different solvent composition was investigated by cryogenic scanning electron microscopy (cryo-SEM). In addition, the morphology of the ionomer, which presumably influences the formation of agglomerated Pt/C particles in a catalyst ink, was investigated by cryogenic transmission electron microscopy (cryo-TEM). The results of a cryo-SEM observation revealed that the agglomerated Pt/C particles tended to become coarser with a higher 1-propanol (NPA) weight fraction. The results of a cryo-TEM observation indicated that the actual ionomer dispersion in a catalyst ink formed a network structure different from that of the ionomer in the solvent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA