Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38861354

RESUMEN

Numerous studies have demonstrated that endostatin (ES), a potent angiostatic peptide derived from collagen type XVIII alpha 1 chain and encoded by COL18A1, is elevated in pulmonary arterial hypertension (PAH). Importantly, elevated ES has consistently been associated with altered hemodynamics, poor functional status, and adverse outcomes in adult and pediatric PAH. This study used serum samples from patients with Group I PAH and plasma and tissue samples derived from the Sugen/Chronic hypoxic (SuHx) rat pulmonary hypertension (PH) model to define associations between COL18A1/ES and disease development, including hemodynamics, right ventricular (RV) remodeling, and RV dysfunction. Using cardiac magnetic resonance (CMR) imaging and advanced hemodynamic assessments with pressure-volume (PV) loops in patients with PAH to assess RV-pulmonary arterial (PA) coupling, we observed a strong relationship between circulating ES levels and metrics of RV structure and function. Specifically, RV mass and the ventricular mass index (VMI) were positively associated with ES while RV ejection fraction and RV-PA coupling were inversely associated with ES levels. Our animal data demonstrates that the development of PH is associated with increased COL18A1/ES in the heart as well as the lungs. Disease-associated increases in COL18A1 mRNA and protein were most pronounced in the RV compared to the left ventricle (LV) and lung. COL18A1 expression in the RV was strongly associated with disease-associated changes in RV mass, fibrosis, and myocardial capillary density. These findings indicate that COL18A1/ES increase early in disease development in the RV and implicate COL18A1/ES in pathologic RV dysfunction in PAH.

2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L638-L645, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375595

RESUMEN

Pulmonary hypertension (PH) is a condition in which remodeling of the pulmonary vasculature leads to hypertrophy of the muscular vascular wall and extension of muscle into nonmuscular arteries. These pathological changes are predominantly due to the abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), enhanced cellular functions that have been linked to increases in the cell membrane protein aquaporin 1 (AQP1). However, the mechanisms underlying the increased AQP1 abundance have not been fully elucidated. Here we present data that establishes a novel interaction between AQP1 and the proteolytic enzyme caspase-3. In silico analysis of the AQP1 protein reveals two caspase-3 cleavage sites on its C-terminal tail, proximal to known ubiquitin sites. Using biotin proximity ligase techniques, we establish that AQP1 and caspase-3 interact in both human embryonic kidney (HEK) 293A cells and rat PASMCs. Furthermore, we demonstrate that AQP1 levels increase and decrease with enhanced caspase-3 activity and inhibition, respectively. Ultimately, further work characterizing this interaction could provide the foundation for novel PH therapeutics.NEW & NOTEWORTHY Pulmonary arterial smooth muscle cells (PASMCs) are integral to pulmonary vascular remodeling, a characteristic of pulmonary arterial hypertension (PAH). PASMCs isolated from robust animal models of disease demonstrate enhanced proliferation and migration, pathological functions associated with increased abundance of the membrane protein aquaporin 1 (AQP1). We present evidence of a novel interaction between the proteolytic enzyme caspase-3 and AQP1, which may control AQP1 abundance. These data suggest a potential new target for novel PAH therapies.


Asunto(s)
Acuaporina 1 , Caspasa 3 , Músculo Liso Vascular , Miocitos del Músculo Liso , Arteria Pulmonar , Animales , Humanos , Masculino , Ratas , Acuaporina 1/metabolismo , Acuaporina 1/genética , Caspasa 3/metabolismo , Proliferación Celular , Células HEK293 , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas Sprague-Dawley
3.
Artículo en Inglés | MEDLINE | ID: mdl-39010824

RESUMEN

BACKGROUND: Conduit pulmonary arterial stiffening and the resultant increase in pulmonary vascular impedance has emerged as an important underlying driver of pulmonary arterial hypertension (PAH). Given that matrix deposition is central to vascular remodeling, we evaluated the role of the collagen crosslinking enzyme lysyl oxidase like 2 (LOXL2) in this study. METHODS AND RESULTS: Human pulmonary artery smooth muscle cells (PASMCs) subjected to hypoxia showed increased LOXL2 secretion. LOXL2 activity and expression were markedly higher in primary PASMCs isolated from pulmonary arteries of the rat Sugen5416 + hypoxia (SuHx) model of severe PH. Similarly, LOXL2 protein and mRNA levels were increased in pulmonary arteries (PA) and lungs of rats with PH (SuHx and monocrotaline (MCT) models). Pulmonary arteries (PAs) isolated from rats with PH exhibited hypercontractility to phenylephrine and attenuated vasorelaxation elicited by acetylcholine, indicating severe endothelial dysfunction. Tensile testing revealed a a significant increase in PA stiffness in PH. Treatment with PAT-1251, a novel small-molecule LOXL2 inhibitor, improved active and passive properties of the PA ex vivo. There was an improvement in right heart function as measured by right ventricular pressure volume loops in-vivo with PAT-1251. Importantly PAT-1251 treatment ameliorated PH, resulting in improved pulmonary artery pressures, right ventricular remodeling, and survival. CONCLUSION: Hypoxia induced LOXL2 activation is a causal mechanism in pulmonary artery stiffening in PH, as well as pulmonary artery mechanical and functional decline. LOXL2 inhibition with PAT-1251 could be a promising approach to improve pulmonary artery pressures, right ventricular elastance, cardiac relaxation, and survival in PAH.

4.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L252-L265, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38226418

RESUMEN

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was ß-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.


Asunto(s)
Antineoplásicos , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratones , Ratas , Calcio/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Ácidos Grasos/metabolismo , Lípidos , Pulmón/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Canales Catiónicos TRPV/metabolismo
5.
Physiol Genomics ; 55(4): 168-178, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878491

RESUMEN

Non-small cell lung cancers (NSCLCs) demonstrate intrinsic resistance to cell death, even after chemotherapy. Previous work suggested defective nuclear translocation of active caspase-3 in observed resistance to cell death. We have identified mitogen-activated protein kinase-activated protein kinase 2 (MK2; encoded by the gene MAPKAPK2) is required for caspase-3 nuclear translocation in the execution of apoptosis in endothelial cells. The objective was to determine MK2 expression in NSCLCs and the association between MK2 and clinical outcomes in patients with NSCLC. Clinical and MK2 mRNA data were extracted from two demographically distinct NSCLC clinical cohorts, North American (The Cancer Genome Atlas, TCGA) and East Asian (EA). Tumor responses following first round of chemotherapy were dichotomized as clinical response (complete response, partial response, and stable disease) or progression of disease. Multivariable survival analyses were performed using Cox proportional hazard ratios and Kaplan-Meier curves. NSCLC exhibited lower MK2 expression than SCLC cell lines. In patients, lower tumor MK2 transcript levels were observed in those presenting with late-stage NSCLC. Higher MK2 expression was associated with clinical response following initial chemotherapy and independently associated with improved 2-yr survival in two distinct cohorts, 0.52 (0.28-0.98) and 0.1 (0.01-0.81), TCGA and EA, respectively, even after adjusting for common oncogenic driver mutations. Survival benefit of higher MK2 expression was unique to lung adenocarcinoma when comparing across various cancers. This study implicates MK2 in apoptosis resistance in NSCLC and suggests prognostic value of MK2 transcript levels in patients with lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Caspasa 3/uso terapéutico , Células Endoteliales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
6.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L700-L711, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36976920

RESUMEN

We have previously identified mitogen-activated protein kinase-activated protein kinase 2 (MK2) is required for caspase-3 nuclear translocation in the execution of apoptosis; however, little is known of the underlying mechanisms. Therefore, we sought to determine the role of kinase and nonkinase functions of MK2 in promoting nuclear translocation of caspase-3. We identified two non-small cell lung cancer cell lines for use in these experiments based on low MK2 expression. Wild-type, enzymatic and cellular localization mutant MK2 constructs were expressed using adenoviral infection. Cell death was evaluated by flow cytometry. In addition, cell lysates were harvested for protein analyses. Phosphorylation of caspase-3 was determined using two-dimensional gel electrophoresis followed by immunoblotting and in vitro kinase assay. Association between MK2 and caspase-3 was evaluated using proximity-based biotin ligation assays and co-immunoprecipitation. Overexpression of MK2 resulted in nuclear translocation of caspase-3 and caspase-3-mediated apoptosis. MK2 directly phosphorylates caspase-3; however, phosphorylation status of caspase-3 or MK2-dependent phosphorylation of caspase-3 did not alter caspase-3 activity. The enzymatic function of MK2 was dispensable in nuclear translocation of caspase-3. MK2 and caspase-3 associated together and a nonenzymatic function of MK2, chaperoned nuclear trafficking, is required for caspase-3-mediated apoptosis. Taken together, our results demonstrate a nonenzymatic role for MK2 in the nuclear translocation of caspase-3. Furthermore, MK2 may function as a molecular switch in regulating the transition between the cytosolic and nuclear functions of caspase-3.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Apoptosis , Caspasa 3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L355-L371, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35763400

RESUMEN

Dysregulated metabolism characterizes both animal and human forms of pulmonary hypertension (PH). Enzymes involved in fatty acid metabolism have previously not been assessed in human pulmonary arteries affected by pulmonary arterial hypertension (PAH), and how inhibition of fatty acid oxidation (FAO) may attenuate PH remains unclear. Fatty acid metabolism gene transcription was quantified in laser-dissected pulmonary arteries from 10 explanted lungs with advanced PAH (5 idiopathic, 5 associated with systemic sclerosis), and 5 donors without lung diseases. Effects of oxfenicine, a FAO inhibitor, on female Sugen 5416-chronic hypoxia (SuHx) rats were studied in vivo using right heart catheterization, and ex vivo using perfused lungs and pulmonary artery ring segments. The impact of pharmacologic (oxfenicine) and genetic (carnitine palmitoyltransferase 1a heterozygosity) FAO suppression was additionally probed in mouse models of Schistosoma and hypoxia-induced PH. Potential mechanisms underlying FAO-induced PH pathogenesis were examined by quantifying ATP and mitochondrial mass in oxfenicine-treated SuHx pulmonary arterial cells, and by assessing pulmonary arterial macrophage infiltration with immunohistochemistry. We found upregulated pulmonary arterial transcription of 26 and 13 FAO genes in idiopathic and systemic sclerosis-associated PAH, respectively. In addition to promoting de-remodeling of pulmonary arteries in SuHx rats, oxfenicine attenuated endothelin-1-induced vasoconstriction. FAO inhibition also conferred modest benefit in the two mouse models of PH. Oxfenicine increased mitochondrial mass in cultured rat pulmonary arterial cells, and decreased the density of perivascular macrophage infiltration in pulmonary arteries of treated SuHx rats. In summary, FAO inhibition attenuated experimental PH, and may be beneficial in human PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Esclerodermia Sistémica , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Femenino , Humanos , Hipertensión Pulmonar/patología , Hipoxia/metabolismo , Ratones , Arteria Pulmonar/metabolismo , Ratas , Esclerodermia Sistémica/patología , Remodelación Vascular
8.
Physiology (Bethesda) ; 35(4): 222-233, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32490752

RESUMEN

Exposure to hypoxia increases pulmonary vascular resistance, leading to elevated pulmonary arterial pressure and, potentially, right heart failure. Vascular remodeling is an important contributor to the increased pulmonary vascular resistance. Hyperproliferation of smooth muscle, endothelial cells, and fibroblasts, and deposition of extracellular matrix lead to increased wall thickness, extension of muscle into normally non-muscular arterioles, and vascular stiffening. This review highlights intrinsic and extrinsic modulators contributing to the remodeling process.


Asunto(s)
Células Endoteliales/patología , Hipertensión Pulmonar/patología , Hipoxia/patología , Remodelación Vascular , Animales , Células Endoteliales/metabolismo , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transducción de Señal , Resistencia Vascular
11.
Physiol Rev ; 92(1): 367-520, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22298659

RESUMEN

It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.


Asunto(s)
Hipoxia/fisiopatología , Alveolos Pulmonares/irrigación sanguínea , Vasoconstricción/fisiología , Mal de Altura/fisiopatología , Comunicación Celular , Humanos , Hipertensión Pulmonar/fisiopatología , Recién Nacido , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Alveolos Pulmonares/embriología , Alveolos Pulmonares/crecimiento & desarrollo , Intercambio Gaseoso Pulmonar/fisiología
15.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L639-L652, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31461316

RESUMEN

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by progressive right ventricle (RV) failure due to elevated pulmonary artery pressures (PAP). In PAH, histologically complex vaso-occlusive lesions in the pulmonary vasculature contribute to elevated PAP. However, the mechanisms underlying dysfunction of the microvascular endothelial cells (MVECs) that comprise a significant portion of these lesions are not well understood. We recently showed that MVECs isolated from the Sugen/hypoxia (SuHx) rat experimental model of PAH (SuHx-MVECs) exhibit increases in migration/proliferation, mitochondrial reactive oxygen species (ROS; mtROS) production, intracellular calcium levels ([Ca2+]i), and mitochondrial fragmentation. Furthermore, quenching mtROS with the targeted antioxidant MitoQ attenuated basal [Ca2+]i, migration and proliferation; however, whether increased mtROS-induced [Ca2+]i entry affected mitochondrial morphology was not clear. In this study, we sought to better understand the relationship between increased ROS, [Ca2+]i, and mitochondrial morphology in SuHx-MVECs. We measured changes in mitochondrial morphology at baseline and following inhibition of mtROS, with the targeted antioxidant MitoQ, or transient receptor potential vanilloid-4 (TRPV4) channels, which we previously showed were responsible for mtROS-induced increases in [Ca2+]i in SuHx-MVECs. Quenching mtROS or inhibiting TRPV4 attenuated fragmentation in SuHx-MVECs. Conversely, inducing mtROS production in MVECs from normoxic rats (N-MVECs) increased fragmentation. Ca2+ entry induced by the TRPV4 agonist GSK1017920A was significantly increased in SuHx-MVECs and was attenuated with MitoQ treatment, indicating that mtROS contributes to increased TRPV4 activity in SuHx-MVECs. Basal and maximal respiration were depressed in SuHx-MVECs, and inhibiting mtROS, but not TRPV4, improved respiration in these cells. Collectively, our data show that, in SuHx-MVECs, mtROS production promotes TRPV4-mediated increases in [Ca2+]i, mitochondrial fission, and decreased mitochondrial respiration. These results suggest an important role for mtROS in driving MVEC dysfunction in PAH.


Asunto(s)
Células Endoteliales/patología , Hipoxia/complicaciones , Indoles/toxicidad , Pulmón/patología , Mitocondrias/patología , Hipertensión Arterial Pulmonar/patología , Pirroles/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Inhibidores de la Angiogénesis/toxicidad , Animales , Calcio/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Pulmón/metabolismo , Masculino , Mitocondrias/metabolismo , Consumo de Oxígeno , Hipertensión Arterial Pulmonar/etiología , Hipertensión Arterial Pulmonar/metabolismo , Ratas , Ratas Wistar , Remodelación Vascular
16.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1118-L1126, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30908935

RESUMEN

Noncanonical roles for caspase-3 are emerging in the fields of cancer and developmental biology. However, little is known of nonapoptotic functions of caspase-3 in most cell types. We have recently demonstrated a disassociation between caspase-3 activation and execution of apoptosis with accompanying cytoplasmic caspase-3 sequestration and preserved endothelial barrier function. Therefore, we tested the hypothesis that nonapoptotic caspase-3 activation promotes endothelial barrier integrity. Human lung microvascular endothelial cells were exposed to thrombin, a nonapoptotic stimulus, and endothelial barrier function was assessed using electric cell-substrate impedance sensing. Actin cytoskeletal rearrangement and paracellular gap formation were assessed using phalloidin staining. Cell stiffness was evaluated using magnetic twisting cytometry. In addition, cell lysates were harvested for protein analyses. Caspase-3 was inhibited pharmacologically with pan-caspase and a caspase-3-specific inhibitor. Molecular inhibition of caspase-3 was achieved using RNA interference. Cells exposed to thrombin exhibited a cytoplasmic activation of caspase-3 with transient and nonapoptotic decrease in endothelial barrier function as measured by a drop in electrical resistance followed by a rapid recovery. Inhibition of caspases led to a more pronounced and rapid drop in thrombin-induced endothelial barrier function, accompanied by increased endothelial cell stiffness and paracellular gaps. Caspase-3-specific inhibition and caspase-3 knockdown both resulted in more pronounced thrombin-induced endothelial barrier disruption. Taken together, our results suggest cytoplasmic caspase-3 has nonapoptotic functions in human endothelium and can promote endothelial barrier integrity.


Asunto(s)
Caspasa 3/metabolismo , Células Endoteliales/citología , Endotelio Vascular/metabolismo , Mucosa Respiratoria/citología , Uniones Estrechas/efectos de los fármacos , Citoesqueleto de Actina/fisiología , Permeabilidad Capilar/efectos de los fármacos , Caspasa 3/genética , Células Cultivadas , Impedancia Eléctrica , Endotelio Vascular/citología , Humanos , Pulmón/citología , Interferencia de ARN , ARN Interferente Pequeño/genética , Trombina/farmacología
17.
Arterioscler Thromb Vasc Biol ; 38(4): 913-926, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29472234

RESUMEN

OBJECTIVE: KLF15 (Kruppel-like factor 15) has recently been shown to suppress activation of proinflammatory processes that contribute to atherogenesis in vascular smooth muscle, however, the role of KLF15 in vascular endothelial function is unknown. Arginase mediates inflammatory vasculopathy and vascular injury in pulmonary hypertension. Here, we tested the hypothesis that KLF15 is a critical regulator of hypoxia-induced Arg2 (arginase 2) transcription in human pulmonary microvascular endothelial cells (HPMEC). APPROACH AND RESULTS: Quiescent HPMEC express ample amounts of full-length KLF15. HPMECs exposed to 24 hours of hypoxia exhibited a marked decrease in KLF15 protein levels and a reciprocal increase in Arg2 protein and mRNA. Chromatin immunoprecipitation indicated direct binding of KLF15 to the Arg2 promoter, which was relieved with HPMEC exposure to hypoxia. Furthermore, overexpression of KLF15 in HPMEC reversed hypoxia-induced augmentation of Arg2 abundance and arginase activity and rescued nitric oxide (NO) production. Ectopic KLF15 also reversed hypoxia-induced endothelium-mediated vasodilatation in isolated rat pulmonary artery rings. Mechanisms by which hypoxia regulates KLF15 abundance, stability, and compartmentalization to the nucleus in HPMEC were then investigated. Hypoxia triggered deSUMOylation of KLF15 by SENP1 (sentrin-specific protease 1), and translocation of KLF15 from nucleus to cytoplasm. CONCLUSIONS: KLF15 is a critical regulator of pulmonary endothelial homeostasis via repression of endothelial Arg2 expression. KLF15 abundance and nuclear compartmentalization are regulated by SUMOylation/deSUMOylation-a hypoxia-sensitive process that is controlled by SENP1. Strategies including overexpression of KLF15 or inhibition of SENP1 may represent novel therapeutic targets for pulmonary hypertension.


Asunto(s)
Arginasa/metabolismo , Cisteína Endopeptidasas/metabolismo , Células Endoteliales/enzimología , Factores de Transcripción de Tipo Kruppel/metabolismo , Pulmón/irrigación sanguínea , Microvasos/enzimología , Proteínas Nucleares/metabolismo , Transcripción Genética , Transporte Activo de Núcleo Celular , Animales , Arginasa/genética , Hipoxia de la Célula , Células Cultivadas , Cisteína Endopeptidasas/genética , Células Endoteliales/patología , Regulación Enzimológica de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Microvasos/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Ratas , Transducción de Señal , Sumoilación , Vasodilatación
18.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L893-L907, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29388466

RESUMEN

Pulmonary arterial hypertension (PAH) is a lethal disease characterized by elevations in pulmonary arterial pressure, in part due to formation of occlusive lesions in the distal arterioles of the lung. These complex lesions may comprise multiple cell types, including endothelial cells (ECs). To better understand the molecular mechanisms underlying EC dysfunction in PAH, lung microvascular endothelial cells (MVECs) were isolated from normoxic rats (N-MVECs) and rats subjected to SU5416 plus hypoxia (SuHx), an experimental model of PAH. Compared with N-MVECs, MVECs isolated from SuHx rats (SuHx-MVECs) appeared larger and more spindle shaped morphologically and expressed canonical smooth muscle cell markers smooth muscle-specific α-actin and myosin heavy chain in addition to endothelial markers such as Griffonia simplicifolia and von Willebrand factor. SuHx-MVEC mitochondria were dysfunctional, as evidenced by increased fragmentation/fission, decreased oxidative phosphorylation, and increased reactive oxygen species (ROS) production. Functionally, SuHx-MVECs exhibited increased basal levels of intracellular calcium concentration ([Ca2+]i) and enhanced migratory and proliferative capacity. Treatment with global (TEMPOL) or mitochondria-specific (MitoQ) antioxidants decreased ROS levels and basal [Ca2]i in SuHx-MVECs. TEMPOL and MitoQ also decreased migration and proliferation in SuHx-MVECs. Additionally, inhibition of ROS-induced Ca2+ entry via pharmacologic blockade of transient receptor potential vanilloid-4 (TRPV4) attenuated [Ca2]i, migration, and proliferation. These findings suggest a role for mitochondrial ROS-induced Ca2+ influx via TRPV4 in promoting abnormal migration and proliferation in MVECs in this PAH model.


Asunto(s)
Calcio/metabolismo , Endotelio Vascular/patología , Hipertensión Pulmonar/patología , Hipoxia/fisiopatología , Indoles/toxicidad , Arteria Pulmonar/patología , Pirroles/toxicidad , Canales Catiónicos TRPV/metabolismo , Enfermedades Vasculares/patología , Inhibidores de la Angiogénesis/toxicidad , Animales , Células Cultivadas , Endotelio Vascular/metabolismo , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Masculino , Microvasos/metabolismo , Microvasos/patología , Arteria Pulmonar/metabolismo , Ratas , Ratas Wistar , Canales Catiónicos TRPV/genética , Enfermedades Vasculares/etiología , Enfermedades Vasculares/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L93-L106, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28882814

RESUMEN

We recently demonstrated that blue light induces vasorelaxation in the systemic mouse circulation, a phenomenon mediated by the nonvisual G protein-coupled receptor melanopsin (Opsin 4; Opn4). Here we tested the hypothesis that nonvisual opsins mediate photorelaxation in the pulmonary circulation. We discovered Opsin 3 (Opn3), Opn4, and G protein-coupled receptor kinase 2 (GRK2) in rat pulmonary arteries (PAs) and in pulmonary arterial smooth muscle cells (PASMCs), where the opsins interact directly with GRK2, as demonstrated with a proximity ligation assay. Light elicited an intensity-dependent relaxation of PAs preconstricted with phenylephrine (PE), with a maximum response between 400 and 460 nm (blue light). Wavelength-specific photorelaxation was attenuated in PAs from Opn4-/- mice and further reduced following shRNA-mediated knockdown of Opn3. Inhibition of GRK2 amplified the response and prevented physiological desensitization to repeated light exposure. Blue light also prevented PE-induced constriction in isolated PAs, decreased basal tone, ablated PE-induced single-cell contraction of PASMCs, and reversed PE-induced depolarization in PASMCs when GRK2 was inhibited. The photorelaxation response was modulated by soluble guanylyl cyclase but not by protein kinase G or nitric oxide. Most importantly, blue light induced significant vasorelaxation of PAs from rats with chronic pulmonary hypertension and effectively lowered pulmonary arterial pressure in isolated intact perfused rat lungs subjected to acute hypoxia. These findings show that functional Opn3 and Opn4 in PAs represent an endogenous "optogenetic system" that mediates photorelaxation in the pulmonary vasculature. Phototherapy in conjunction with GRK2 inhibition could therefore provide an alternative treatment strategy for pulmonary vasoconstrictive disorders.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/antagonistas & inhibidores , Hipertensión Pulmonar/radioterapia , Fototerapia , Arteria Pulmonar/efectos de la radiación , Opsinas de Bastones/fisiología , Vasodilatación/efectos de la radiación , Animales , Células Cultivadas , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Hipoxia/complicaciones , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de la radiación , Óxido Nítrico/metabolismo , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Guanilil Ciclasa Soluble/genética , Guanilil Ciclasa Soluble/metabolismo , Vasodilatación/fisiología
20.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L889-L898, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28798257

RESUMEN

Exposure to hypoxia induces migration and proliferation of pulmonary arterial smooth muscle cells (PASMCs), leading to vascular remodeling and contributing to the development of hypoxic pulmonary hypertension. The mechanisms controlling PASMC growth and motility are incompletely understood, although aquaporin 1 (AQP1) plays an important role. In tumor, kidney, and stem cells, AQP1 has been shown to interact with ß-catenin, a dual function protein that activates the transcription of crucial target genes (i.e., c-Myc and cyclin D1) related to cell migration and proliferation. Thus the goal of this study was to examine mechanisms by which AQP1 mediates PASMC migration and proliferation, with a focus on ß-catenin. Using primary rat PASMCs from resistance level pulmonary arteries infected with adenoviral constructs containing green fluorescent protein (control; AdGFP), wild-type AQP1 (AdAQP1), or AQP1 with the COOH-terminal tail deleted (AdAQP1M), we demonstrated that increasing AQP1 expression upregulated ß-catenin protein levels and the expression (mRNA and protein) of the known ß-catenin targets c-Myc and cyclin D1. In contrast, infection with AdAQP1M had no effect on any of these variables. Using silencing approaches to reduce ß-catenin levels prevented both hypoxia- and AQP1-induced migration and proliferation of PASMCs, as well as induction of c-Myc and cyclin D1 by AQP1. Thus our results indicate that elevated AQP1 levels upregulate ß-catenin protein levels, via a mechanism requiring the AQP1 COOH-terminal tail, enhancing expression of ß-catenin targets and promoting PASMC proliferation and migration.


Asunto(s)
Acuaporina 1/metabolismo , Movimiento Celular , Proliferación Celular , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , beta Catenina/metabolismo , Animales , Acuaporina 1/genética , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Hipertensión Pulmonar/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Ratas , Remodelación Vascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA