Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiology (Bethesda) ; 38(2): 0, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256636

RESUMEN

The significance of the coupling delay, which is the time required for interactions between coupled oscillators, in various oscillatory dynamics has been investigated mathematically for more than three decades, but its biological significance has been revealed only recently. In the segmentation clock, which regulates the periodic formation of somites in embryos, Hes7 expression oscillates synchronously between neighboring presomitic mesoderm (PSM) cells, and this synchronized oscillation is controlled by Notch signaling-mediated coupling between PSM cells. Recent studies have shown that inappropriate coupling delays dampen and desynchronize Hes7 oscillations, as simulated mathematically, leading to the severe fusion of somites and somite-derived tissues such as the vertebrae and ribs. These results indicate the biological significance of the coupling delay in synchronized Hes7 oscillations in the segmentation clock. The recent development of an in vitro PSM-like system will facilitate the detailed analysis of the coupling delay in synchronized oscillations.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Somitos , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Somitos/metabolismo , Transducción de Señal/fisiología
2.
Genes Dev ; 30(1): 102-16, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26728556

RESUMEN

Notch signaling regulates tissue morphogenesis through cell-cell interactions. The Notch effectors Hes1 and Hes7 are expressed in an oscillatory manner and regulate developmental processes such as neurogenesis and somitogenesis, respectively. Expression of the mRNA for the mouse Notch ligand Delta-like1 (Dll1) is also oscillatory. However, the dynamics of Dll1 protein expression are controversial, and their functional significance is unknown. Here, we developed a live-imaging system and found that Dll1 protein expression oscillated in neural progenitors and presomitic mesoderm cells. Notably, when Dll1 expression was accelerated or delayed by shortening or elongating the Dll1 gene, Dll1 oscillations became severely dampened or quenched at intermediate levels, as modeled mathematically. Under this condition, Hes1 and Hes7 oscillations were also dampened. In the presomitic mesoderm, steady Dll1 expression led to severe fusion of somites and their derivatives, such as vertebrae and ribs. In the developing brain, steady Dll1 expression inhibited proliferation of neural progenitors and accelerated neurogenesis, whereas optogenetic induction of Dll1 oscillation efficiently maintained neural progenitors. These results indicate that the appropriate timing of Dll1 expression is critical for the oscillatory networks and suggest the functional significance of oscillatory cell-cell interactions in tissue morphogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Morfogénesis/fisiología , Neuronas/metabolismo , Células Madre/metabolismo , Animales , Proteínas de Unión al Calcio , Comunicación Celular , Proliferación Celular , Células Cultivadas , Técnicas de Sustitución del Gen , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Mutación , Neurogénesis/genética , Neuronas/citología , Receptores Notch/genética , Transducción de Señal/genética , Somitos/embriología , Células Madre/citología , Imagen de Lapso de Tiempo
3.
Development ; 147(4)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32094111

RESUMEN

The expression of the transcriptional repressor Hes1 oscillates in many cell types, including neural progenitor cells (NPCs), but the significance of Hes1 oscillations in development is not fully understood. To examine the effect of altered oscillatory dynamics of Hes1, we generated two types of Hes1 knock-in mice, a shortened (type-1) and an elongated (type-2) Hes1 gene, and examined their phenotypes focusing on neural development. Although both mutations affected Hes1 oscillations, the type-1 mutation dampened Hes1 oscillations more severely, resulting in much lower amplitudes. The average levels of Hes1 expression in type-1 mutant NPCs were also lower than in wild-type NPCs but similar to or slightly higher than those in Hes1 heterozygous mutant mice, which exhibit no apparent defects. Whereas type-2 mutant mice were apparently normal, type-1 mutant mice displayed smaller brains than wild-type mice and upregulated proneural gene expression. Furthermore, proliferation of NPCs decreased and cell death increased in type-1 mutant embryos. When Hes3 and Hes5 were additionally deleted, neuronal differentiation was also accelerated, leading to microcephaly. Thus, robust Hes1 oscillations are required for maintenance and proliferation of NPCs and the normal timing of neurogenesis, thereby regulating brain morphogenesis.


Asunto(s)
Encéfalo/embriología , Neuronas/fisiología , Oscilometría , Factor de Transcripción HES-1/fisiología , Animales , Muerte Celular , Diferenciación Celular , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Homocigoto , Procesamiento de Imagen Asistido por Computador , Intrones , Masculino , Ratones , Modelos Teóricos , Mutación , Células-Madre Neurales/citología , Neurogénesis
4.
Dev Growth Differ ; 65(6): 360-369, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37309238

RESUMEN

The first stage of cell differentiation during mouse development is the differentiation into the trophectoderm and inner cell mass, which occurs during the 8-32-cell stages of preimplantation embryos. This differentiation is regulated by the Hippo signaling pathway. At the 32-cell stage, embryos establish a position-dependent distribution of the Hippo pathway coactivator, Yes-associated protein 1 (YAP, encoded by Yap1). The outer and inner cells showed nuclear and cytoplasmic localization of YAP, respectively. However, the process by which embryos establish position-dependent YAP localization remains elusive. Here, we established a YAP-reporter mouse line, Yap1mScarlet , and examined YAP-mScarlet protein dynamics during the 8-32-cell stages using live imaging. During mitosis, YAP-mScarlet diffused throughout the cells. YAP-mScarlet dynamics in daughter cells varied depending on the cell division patterns. YAP-mScarlet localization in daughter cells at the completion of cell division coincided with that in mother cells. Experimental manipulation of YAP-mScarlet localization in mother cells also altered its localization in daughter cells upon completion of cell division. In daughter cells, YAP-mScarlet localization gradually changed to the final pattern. In some divisions during the 8-16-cell stages, the cytoplasmic YAP-mScarlet localization preceded cell internalization. These results suggest that cell position is not a primary determinant of YAP localization and that the Hippo signaling status of the mother cell is inherited by the daughter cells, which likely contributes to the stabilization of the cell fate specification process beyond cell division.


Asunto(s)
Blastocisto , Proteínas Serina-Treonina Quinasas , Proteínas Señalizadoras YAP , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Blastocisto/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/metabolismo
5.
Mol Psychiatry ; 26(6): 2633-2650, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32350390

RESUMEN

Calcium, the most versatile second messenger, regulates essential biology including crucial cellular events in embryogenesis. We investigated impacts of calcium channels and purinoceptors on neuronal differentiation of normal mouse embryonic stem cells (ESCs), with outcomes being compared to those of in vitro models of Huntington's disease (HD). Intracellular calcium oscillations tracked via real-time fluorescence and luminescence microscopy revealed a significant correlation between calcium transient activity and rhythmic proneuronal transcription factor expression in ESCs stably expressing ASCL-1 or neurogenin-2 promoters fused to luciferase reporter genes. We uncovered that pharmacological manipulation of L-type voltage-gated calcium channels (VGCCs) and purinoceptors induced a two-step process of neuronal differentiation. Specifically, L-type calcium channel-mediated augmentation of spike-like calcium oscillations first promoted stable expression of ASCL-1 in differentiating ESCs, which following P2Y2 purinoceptor activation matured into GABAergic neurons. By contrast, there was neither spike-like calcium oscillations nor responsive P2Y2 receptors in HD-modeling stem cells in vitro. The data shed new light on mechanisms underlying neurogenesis of inhibitory neurons. Moreover, our approach may be tailored to identify pathogenic triggers of other developmental neurological disorders for devising targeted therapies.


Asunto(s)
Enfermedad de Huntington , Células-Madre Neurales , Adenosina Trifosfato , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Neuronas GABAérgicas/metabolismo , Enfermedad de Huntington/genética , Ratones , Células-Madre Neurales/metabolismo , Neurogénesis
6.
Proc Jpn Acad Ser B Phys Biol Sci ; 96(8): 351-363, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33041269

RESUMEN

Neural stem cells (NSCs) actively proliferate and generate neurons and glial cells (active state) in the embryonic brain, whereas they are mostly dormant (quiescent state) in the adult brain. The expression dynamics of Hes1 are different between active and quiescent NSCs. In active NSCs, Hes1 expression oscillates and periodically represses the expression of proneural genes such as Ascl1, thereby driving their oscillations. By contrast, in quiescent NSCs, Hes1 oscillations maintain expression at higher levels even at trough phases (thus continuous), thereby continuously suppressing proneural gene expression. High levels of Hes1 expression and the resultant suppression of Ascl1 promote the quiescent state of NSCs, whereas oscillatory Hes1 expression and the resultant oscillatory Ascl1 expression regulate their active state. Furthermore, in other developmental contexts, high, continuous Hes1 expression induces astrocyte differentiation or the formation of boundaries, which function as signaling centers. Thus, the expression dynamics of Hes1 are a key regulatory mechanism generating and maintaining various cell types in the nervous system.


Asunto(s)
Células-Madre Neurales/metabolismo , Transcriptoma , Animales , Humanos , Células-Madre Neurales/citología , Transducción de Señal/genética , Factor de Transcripción HES-1/genética
7.
J Biol Chem ; 293(21): 8285-8294, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29523683

RESUMEN

The transcription factor Hes family basic helix-loop-helix transcription factor 1 (Hes1) is a downstream effector of Notch signaling and plays a crucial role in orchestrating developmental processes during the embryonic stage. However, its aberrant signaling in adulthood is linked to the pathogenesis of cancer. In the present study, we report the discovery of small organic molecules (JI051 and JI130) that impair the ability of Hes1 to repress transcription. Hes1 interacts with the transcriptional corepressor transducing-like enhancer of split 1 (TLE1) via an interaction domain comprising two tryptophan residues, prompting us to search a chemical library of 1,800 small molecules enriched for indole-like π-electron-rich pharmacophores for a compound that blocks Hes1-mediated transcriptional repression. This screening identified a lead compound whose extensive chemical modification to improve potency yielded JI051, which inhibited HEK293 cell proliferation with an EC50 of 0.3 µm Unexpectedly, using immunomagnetic isolation and nanoscale LC-MS/MS, we found that JI051 does not bind TLE1 but instead interacts with prohibitin 2 (PHB2), a cancer-associated protein chaperone. We also found that JI051 stabilizes PHB2's interaction with Hes1 outside the nucleus, inducing G2/M cell-cycle arrest. Of note, JI051 dose-dependently reduced cell growth of the human pancreatic cancer cell line MIA PaCa-2, and JI130 treatment significantly reduced tumor volume in a murine pancreatic tumor xenograft model. These results suggest a previously unrecognized role for PHB2 in the regulation of Hes1 and may inform potential strategies for managing pancreatic cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Represoras/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Factor de Transcripción HES-1/antagonistas & inhibidores , Animales , Antineoplásicos/química , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Prohibitinas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo , Transcripción Genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Genes Dev ; 25(11): 1115-20, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21632822

RESUMEN

Somitogenesis is controlled by cyclic genes such as Notch effectors and by the wave front established by morphogens such as Fgf8, but the precise mechanism of how these factors are coordinated remains to be determined. Here, we show that effectors of Notch and Fgf pathways oscillate in different dynamics and that oscillations in Notch signaling generate alternating phase shift, thereby periodically segregating a group of synchronized cells, whereas oscillations in Fgf signaling released these synchronized cells for somitogenesis at the same time. These results suggest that Notch oscillators define the prospective somite region, while Fgf oscillators regulate the pace of segmentation.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Somitos/citología , Somitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Línea Celular , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Ratones , Periodicidad , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
9.
Semin Cell Dev Biol ; 49: 76-82, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26818178

RESUMEN

During somite segmentation, mRNA expression of the mouse Notch ligand Delta-like1 (Dll1) oscillates synchronously in the presomitic mesoderm (PSM). However, the dynamics of Dll1 protein expression were rather controversial, and their functional significance was not known. Recent live-imaging analysis showed that Dll1 protein expression also oscillates synchronously in the PSM. Interestingly, accelerated or delayed Dll1 expression by shortening or elongating the Dll1 gene, respectively, dampens or quenches Dll1 oscillation at intermediate levels, a phenomenon known as "amplitude/oscillation death" of coupled oscillators in mathematical modeling. Under this condition, oscillation of the Notch effector Hes7 is also dampened, leading to severe fusion of somites and their derivatives, such as vertebrae and ribs. Thus, the appropriate timing of Dll1 expression is critical for its oscillatory expression, pointing to the functional significance of Dll1-mediated oscillatory cell-cell interactions in the segmentation clock. In neural stem cells, Dll1 expression is also oscillatory, but non-synchronous, and when Dll1 oscillation is dampened, oscillation of another Notch effector, Hes1, is also dampened, leading to defects of neural development. In this review, we discuss the underlying mechanism for the different oscillatory dynamics (synchronous versus non-synchronous) in the PSM and neural stem cells in a unified manner.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Neurogénesis , Receptores Notch/fisiología , Somitos/metabolismo , Animales , Tipificación del Cuerpo , Proteínas de Unión al Calcio , Desarrollo Embrionario , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Células-Madre Neurales/fisiología , Transducción de Señal
10.
Adv Exp Med Biol ; 1066: 265-277, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30030831

RESUMEN

The Notch effectors Hes1 and Hes7 and the Notch ligand Delta-like1 (Dll1) are expressed in an oscillatory manner during neurogenesis and somitogenesis. These two biological events exhibit different types of oscillations: anti-/out-of-phase oscillation in neural stem cells during neurogenesis and in-phase oscillation in presomitic mesoderm (PSM) cells during somitogenesis. Accelerated or delayed Dll1 expression by shortening or elongating the size of the Dll1 gene, respectively, dampens or quenches Dll1 oscillation at intermediate levels, a phenomenon known as "amplitude/oscillation death" of coupled oscillators. Under this condition, both Hes1 oscillation in neural stem cells and Hes7 oscillation in PSM cells are also dampened. As a result, maintenance of neural stem cells is impaired, leading to microcephaly, while somite segmentation is impaired, leading to severe fusion of somites and their derivatives, such as vertebrae and ribs. Thus, the appropriate timing of Dll1 expression is critical for the oscillatory expression in Notch signaling and normal processes of neurogenesis and somitogenesis. Optogenetic analysis indicated that Dll1 oscillations transfer the oscillatory information between neighboring cells, which may induce anti-/out-of-phase and in-phase oscillations depending on the delay in signaling transmission. These oscillatory dynamics can be described in a unified manner by mathematical modeling.


Asunto(s)
Relojes Biológicos/fisiología , Embrión de Mamíferos/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al Calcio , Embrión de Mamíferos/citología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mesodermo/citología , Mesodermo/embriología , Receptores Notch/genética , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo
11.
Semin Cell Dev Biol ; 34: 85-90, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24865153

RESUMEN

Somites, metameric structures, give rise to the vertebral column, ribs, skeletal muscles and subcutaneous tissues. In mouse embryos, a pair of somites is formed every 2h by segmentation of the anterior parts of the presomitic mesoderm. This periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 oscillation is regulated by negative feedback with a delayed timing. This process has been mathematically simulated by differential-delay equations, which predict that negative feedback with shorter delays would abolish oscillations or produce dampened but more rapid oscillations. We found that reducing the number of introns within the Hes7 gene shortens the delay and abolishes Hes7 oscillation or results in a more rapid tempo of Hes7 oscillation, increasing the number of somites and vertebrae in the cervical and upper thoracic region. We also found that Hes1, a Hes7-related gene, is expressed in an oscillatory manner by many cell types, including fibroblasts and neural stem cells. In these cells, Hes1 expression oscillates with a period of about 2-3h, and this oscillation is important for cell cycle progression. Furthermore, in neural stem cells, Hes1 oscillation drives cyclic expression of the proneural genes Ascl1 and Neurogenin2 and regulates multipotency. Hes1 expression oscillates more slowly in embryonic stem cells, and Hes1 oscillation regulates their fate preferences. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) is important for many biological events.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Homeodominio/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ritmo Circadiano , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Células-Madre Neurales/fisiología , Estabilidad Proteica , Transducción de Señal , Factor de Transcripción HES-1
12.
Cell Tissue Res ; 359(1): 125-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24850276

RESUMEN

The basic helix-loop-helix factors Hes1 and Hes5 repress the expression of proneural factors such as Ascl1, thereby inhibiting neuronal differentiation and maintaining neural progenitor cells (NPCs). Hes1 expression oscillates by negative feedback with a period of about 2-3 h in proliferating NPCs. Induction of sustained expression of Hes1 in NPCs inhibits their cell-cycle progression, suggesting that the oscillatory expression of Hes1 is important for the proliferation of NPCs. Hes1 oscillation drives the oscillatory expression of proneural factors such as Ascl1 by periodic repression. By contrast, in differentiating neurons, Hes1 expression disappears and the expression of proneural factors is up-regulated and sustained. A new optogenetics approach that induces Ascl1 expression by blue light illumination demonstrated that sustained expression of Ascl1 induces neuronal differentiation, whereas oscillatory expression of Ascl1 activates the proliferation of NPCs. These results together indicate that Hes1 regulates the oscillatory versus sustained expression of the proneural factor Ascl1, which in turn regulates the proliferation of NPCs and the subsequent processes of cell-cycle exit and neuronal fate determination, depending on the expression dynamics.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Neurogénesis , Animales , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Optogenética , Receptores Notch/metabolismo
13.
Cell Mol Life Sci ; 70(12): 2045-57, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22971775

RESUMEN

Notch signaling plays crucial roles in fate determination and the differentiation of neural stem cells in embryonic and adult brains. It is now clear that the notch pathway is under more complex and dynamic regulation than previously thought. To understand the functional details of notch signaling more precisely, it is important to reveal when, where, and how notch signaling is dynamically communicated between cells, for which the visualization of notch signaling is essential. In this review, we introduce recent technical advances in the visualization of notch signaling during neural development and in the adult brain, and we discuss the physiological significance of dynamic regulation of notch signaling.


Asunto(s)
Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Regulación de la Expresión Génica/fisiología , Neurogénesis/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes , Humanos , Luciferasas , Ratones , Ratones Transgénicos , Modelos Biológicos , Neurogénesis/genética , Receptores Notch/genética , Transducción de Señal/genética , beta-Galactosidasa
14.
Dev Cell ; 59(15): 1913-1923.e6, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38772376

RESUMEN

Neural stem cells (NSCs) differentiate into neuron-fated intermediate progenitor cells (IPCs) via cell division. Although differentiation from NSCs to IPCs is a discrete process, recent transcriptome analyses identified a continuous transcriptional trajectory during this process, raising the question of how to reconcile these contradictory observations. In mouse NSCs, Hes1 expression oscillates, regulating the oscillatory expression of the proneural gene Neurog2, while Hes1 expression disappears in IPCs. Thus, the transition from Hes1 oscillation to suppression is involved in the differentiation of NSCs to IPCs. Here, we found that Neurog2 oscillations induce the accumulation of Tbr2, which suppresses Hes1 expression, generating an IPC-like gene expression state in NSCs. In the absence of Tbr2, Hes1 expression is up-regulated, decreasing the formation of IPCs. These results indicate that the Neurog2-Tbr2 axis forms a continuous transcriptional trajectory to an IPC-like neurogenic state in NSCs, which then differentiate into IPCs via cell division.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Proteínas del Tejido Nervioso , Células-Madre Neurales , Neurogénesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Animales , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Ratones , Neurogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción HES-1/metabolismo , Factor de Transcripción HES-1/genética , Neuronas/metabolismo , Neuronas/citología , Proteínas de Dominio T Box
15.
Stem Cells ; 29(11): 1817-28, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21898698

RESUMEN

During mammalian brain development, neural stem cells transform from neuroepithelial cells to radial glial cells and finally remain as astrocyte-like cells in the postnatal and adult brain. Neuroepithelial cells divide symmetrically and expand the neural stem cell pool; after the onset of neurogenesis, radial glial cells sequentially produce deep layer neurons and then superficial layer neurons by asymmetric, self-renewing divisions during cortical development. Thereafter, gliogenesis supersedes neurogenesis, while a subset of neural stem cells retain their stemness and lurk in the postnatal and adult brain. Thus, neural stem cells undergo alterations in morphology and the capacity to proliferate or give rise to various types of neural cells in a temporally regulated manner. To shed light on the temporal alterations of embryonic neural stem cells, we sorted the green fluorescent protein-positive cells from the dorsolateral telencephalon (neocortical region) of pHes1-d2EGFP transgenic mouse embryos at different developmental stages and performed gene expression profiling. Among dozens of transcription factors differentially expressed by cells in the ventricular zone during the course of development, several of them exhibited the activity to inhibit neuronal differentiation when overexpressed. Furthermore, knockdown of Tcf3 or Klf15 led to accelerated neuronal differentiation of neural stem cells in the developing cortex, and neurospheres originated from Klf15 knockdown cells mostly lacked neurogenic activities and only retained gliogenic activities. These results suggest that Tcf3 and Klf15 play critical roles in the maintenance of neural stem cells at early and late embryonic stages, respectively.


Asunto(s)
Diferenciación Celular/fisiología , Perfilación de la Expresión Génica/métodos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Movimiento Celular/fisiología , Células Cultivadas , Hibridación in Situ , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos
16.
Nat Commun ; 12(1): 1318, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637744

RESUMEN

Cell-cell interactions mediated by Notch are critical for the maintenance of skeletal muscle stem cells. However, dynamics, cellular source and identity of functional Notch ligands during expansion of the stem cell pool in muscle growth and regeneration remain poorly characterized. Here we demonstrate that oscillating Delta-like 1 (Dll1) produced by myogenic cells is an indispensable Notch ligand for self-renewal of muscle stem cells in mice. Dll1 expression is controlled by the Notch target Hes1 and the muscle regulatory factor MyoD. Consistent with our mathematical model, our experimental analyses show that Hes1 acts as the oscillatory pacemaker, whereas MyoD regulates robust Dll1 expression. Interfering with Dll1 oscillations without changing its overall expression level impairs self-renewal, resulting in premature differentiation of muscle stem cells during muscle growth and regeneration. We conclude that the oscillatory Dll1 input into Notch signaling ensures the equilibrium between self-renewal and differentiation in myogenic cell communities.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/fisiología , Desarrollo de Músculos/fisiología , Músculos/metabolismo , Células Madre/fisiología , Animales , Proteínas de Unión al Calcio/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Mutación , Proteína MioD/genética , Proteína MioD/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción HES-1/metabolismo , Transcriptoma
17.
Dev Cell ; 52(6): 731-747.e8, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32059775

RESUMEN

Notch signaling controls proliferation of multipotent pancreatic progenitor cells (MPCs) and their segregation into bipotent progenitors (BPs) and unipotent pro-acinar cells (PACs). Here, we showed that fast ultradian oscillations of the ligand Dll1 and the transcriptional effector Hes1 were crucial for MPC expansion, and changes in Hes1 oscillation parameters were associated with selective adoption of BP or PAC fate. Conversely, Jag1, a uniformly expressed ligand, restrained MPC growth. However, when its expression later segregated to PACs, Jag1 became critical for the specification of all but the most proximal BPs, and BPs were entirely lost in Jag1; Dll1 double mutants. Anatomically, ductal morphogenesis and organ architecture are minimally perturbed in Jag1 mutants until later stages, when ductal remodeling fails, and signs of acinar-to-ductal metaplasia appear. Our study thus uncovers that oscillating Notch activity in the developing pancreas, modulated by Jag1, is required to coordinate MPC growth and fate.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/metabolismo , Proteína Jagged-1/metabolismo , Páncreas/citología , Transducción de Señal , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Linaje de la Célula , Células Madre Embrionarias/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteína Jagged-1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Páncreas/embriología , Páncreas/metabolismo , Periodicidad , Receptores Notch/genética , Receptores Notch/metabolismo , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo
18.
J Vis Exp ; (154)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31885384

RESUMEN

Notch signaling regulates the maintenance of neural stem/progenitor cells by cell-cell interactions. The components of Notch signaling exhibit dynamic expression. Notch signaling effector Hes1 and the Notch ligand Delta-like1 (Dll1) are expressed in an oscillatory manner in neural stem/progenitor cells. Because the period of the oscillatory expression of these genes is very short (2 h), it is difficult to monitor their cyclic expression. To examine such rapid changes in the gene expression or protein dynamics, fast response reporters are required. Because of its fast maturation kinetics and high sensitivity, the bioluminescence reporter luciferase is suitable to monitor rapid gene expression changes in living cells. We used a destabilized luciferase reporter for monitoring the promoter activity and a luciferase-fused reporter for visualization of protein dynamics at single cell resolution. These bioluminescence reporters show rapid turnover and generate very weak signals; therefore, we have developed a highly sensitive bioluminescence imaging system to detect such faint signals. These methods enable us to monitor various gene expression dynamics in living cells and tissues, which are important information to help understand the actual cellular states.


Asunto(s)
Mediciones Luminiscentes/métodos , Neurogénesis/fisiología , Receptores Notch/fisiología , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos ICR , Células-Madre Neurales/fisiología , Transducción de Señal/fisiología
19.
Neurosci Res ; 138: 12-18, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30227160

RESUMEN

During brain development, neural stem cells change their competency to give sequential rise to neurons and glial cells. Expression of the basic helix-loop-helix (bHLH)-type cell-fate determination factors Ascl1, Olig2, and Hes1 is oscillatory in neural stem cells. Conversely, sustained expression of these factors mediates cell-fate determination. Optogenetic analyses suggest that oscillatory expression regulates maintenance and proliferation of neural stem cells, and that sustained expression induces cell-fate determination. Expression of the Notch ligand Delta-like1 (Dll1), which is controlled by Hes1 and Ascl1, is also oscillatory in neural stem cells. Mathematical modeling showed that if the timing of Dll1 expression is changed, Hes1 oscillations are severely dampened, resulting in impaired maintenance and proliferation of neural stem cells and causing microcephaly. Another bHLH factor, Hes5, also shows oscillatory expression in neural stem cells. Hes5 overexpression and knock-out result in abnormal expression of Hmga1 and Hmga2, which are essential for timing the switching of neural stem-cell competency. These data indicate that oscillatory expression of bHLH factors is important for normal neural stem-cell function in the developing nervous system.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Modelos Biológicos
20.
Dev Cell ; 36(4): 358-9, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26906731

RESUMEN

A study by Tsiairis and Aulehla (2016), published in Cell, reveals that randomized mixtures of dissociated presomitic mesoderm (PSM) cells reestablish wave-like propagating patterns of oscillatory gene expression by tuning the oscillation dynamics in response to surrounding cells. Thus, PSM cells self-organize the phase-coupled oscillators.


Asunto(s)
Relojes Biológicos , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Organizadores Embrionarios/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA