Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(11)2019 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-31159498

RESUMEN

We develop a novel approach improving existing target localization algorithms for distributed multiple-input multiple-output (MIMO) radars based on bistatic range measurements (BRMs). In the proposed algorithms, we estimate the target position with auxiliary parameters consisting of both the target-transmitter distances and the target-receiver distances (hence, "double-sided") in contrast to the existing BRM methods. Furthermore, we apply the double-sided approach to multistage BRM methods. Performance improvements were demonstrated via simulations and a limited theoretical analysis was attempted for the ideal two-dimensional case.

2.
Adv Sci (Weinh) ; 8(9): 2004290, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33977065

RESUMEN

Recent research has built a consensus that the binder plays a key role in the performance of high-capacity silicon anodes in lithium-ion batteries. These anodes necessitate the use of a binder to maintain the electrode integrity during the immense volume change of silicon during cycling. Here, Zn2+-imidazole coordination crosslinks that are formed to carboxymethyl cellulose backbones in situ during electrode fabrication are reported. The recoverable nature of Zn2+-imidazole coordination bonds and the flexibility of the poly(ethylene glycol) chains are jointly responsible for the high elasticity of the binder network. The high elasticity tightens interparticle contacts and sustains the electrode integrity, both of which are beneficial for long-term cyclability. These electrodes, with their commercial levels of areal capacities, exhibit superior cycle life in full-cells paired with LiNi0.8Co0.15Al0.05O2 cathodes. The present study underlines the importance of highly reversible metal ion-ligand coordination chemistries for binders intended for high capacity alloying-based electrodes.

3.
Adv Mater ; 32(52): e2005022, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33184954

RESUMEN

The unparalleled theoretical specific energy of lithium-sulfur (Li-S) batteries has attracted considerable research interest from within the battery community. However, most of the long cycling results attained thus far relies on using a large amount of electrolyte in the cell, which adversely affects the specific energy of Li-S batteries. This shortcoming originates from the low solubility of polysulfides in the electrolyte. Here, 1,3-dimethyl-2-imidazolidinone (DMI) is reported as a new high donor electrolyte for Li-S batteries. The high solubility of polysulfides in DMI and its activation of a new reaction route, which engages the sulfur radical (S3 •- ), enables the efficient utilization of sulfur as reflected in the specific capacity of 1595 mAh g-1 under lean electrolyte conditions of 5 µLelectrolyte mgsulfur -1 . Moreover, the addition of LiNO3 stabilizes the lithium metal interface, thereby elevating the cycling performance to one of the highest known for high donor electrolytes in Li-S cells. These engineered high donor electrolytes are expected to advance Li-S batteries to cover a wide range of practical applications, particularly by incorporating established strategies to realize the reversibility of lithium metal electrodes.

4.
ACS Appl Mater Interfaces ; 12(9): 10597-10606, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32031365

RESUMEN

The high specific capacity in excess of 200 mAh g-1 and low dependence on cobalt have enhanced the research interest on nickel-rich layered metal oxides as cathode materials for lithium-ion batteries for electric vehicles. Nonetheless, their poor cycle life and thermal stability, resulting from the occurrence of cation mixing between the transition-metal (TM) and lithium ions, are yet to be fully addressed to enable the widespread and reliable use of these materials. Here, we report a two-dimensional (2D) pyrazine-linked covalent organic framework (namely, Pyr-2D) as a coating material for nickel-rich layered cathodes to mitigate unwanted TM dissolution and interfacial reactions. The Pyr-2D coating layer, especially the 2D planar morphology and conjugated atomic configuration of Pyr-2D, protects the electrode surface effectively during cycling without sacrificing the electric conductivity of the host material. As a result, Pyr-2D-coated nickel-rich layered cathodes exhibited superior cyclability, rate performance, and thermal stability. The present study highlights the potential ability of 2D conjugated covalent organic frameworks to improve the key electrochemical properties of emerging battery electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA