Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 81(16): 5420-9, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26048939

RESUMEN

Taxonomic classification of Clostridium botulinum is based on the production of botulinum neurotoxin (BoNT), while closely related, nontoxic organisms are classified as Clostridium sporogenes. However, this taxonomic organization does not accurately mirror phylogenetic relationships between these species. A phylogenetic reconstruction using 2,016 orthologous genes shared among strains of C. botulinum group I and C. sporogenes clearly separated these two species into discrete clades which showed ∼93% average nucleotide identity (ANI) between them. Clustering of strains based on the presence of variable orthologs revealed 143 C. sporogenes clade-specific genetic signatures, a subset of which were further evaluated for their ability to correctly classify a panel of presumptive C. sporogenes strains by PCR. Genome sequencing of several C. sporogenes strains lacking these signatures confirmed that they clustered with C. botulinum strains in a core genome phylogenetic tree. Our analysis also identified C. botulinum strains that contained C. sporogenes clade-specific signatures and phylogenetically clustered with C. sporogenes strains. The genome sequences of two bont/B2-containing strains belonging to the C. sporogenes clade contained regions with similarity to a bont-bearing plasmid (pCLD), while two different strains belonging to the C. botulinum clade carried bont/B2 on the chromosome. These results indicate that bont/B2 was likely acquired by C. sporogenes strains through horizontal gene transfer. The genome-based classification of these species used to identify candidate genes for the development of rapid assays for molecular identification may be applicable to additional bacterial species that are challenging with respect to their classification.


Asunto(s)
Clostridium/clasificación , Clostridium/genética , Genoma Bacteriano , Cromosomas , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Sitios Genéticos , Genotipo , Datos de Secuencia Molecular , Filogenia , Plásmidos , Análisis de Secuencia de ADN , Homología de Secuencia
2.
BMC Microbiol ; 14: 192, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25031122

RESUMEN

BACKGROUND: In the United States, most Clostridium botulinum type A strains isolated during laboratory investigations of human botulism demonstrate the presence of an expressed type A botulinum neurotoxin (BoNT/A) gene and an unexpressed BoNT/B gene. These strains are designated type A(B). The most common pulsed-field gel electrophoresis (PFGE) pattern in the C. botulinum PulseNet database is composed of A(B) strains. The purpose of this study was to evaluate the ability of genome sequencing and multi-loci variable number of tandem repeat analysis (MLVA) to differentiate such strains. RESULTS: The genome sequences of type A(B) strains evaluated in this study are closely related and cluster together compared to other available C. botulinum Group I genomes. In silico multilocus sequence typing (MLST) analysis (7-loci) was unable to differentiate any of the type A(B) strains isolated from seven different outbreak investigations evaluated in this study. A 15-locus MLVA scheme demonstrated an improved ability to differentiate these strains, however, repeat unit variation among the strains was restricted to only two loci. Reference-free single nucleotide polymorphism (SNP) analysis demonstrated the ability to differentiate strains from all of the outbreaks examined and a non-outbreak associated strain. CONCLUSIONS: This study confirms that type A(B) strains that share the same PFGE pattern also share closely-related genome sequences. The lack of a complete type A(B) strain representative genome sequence hinders the ability to assemble genomes by reference mapping and analysis of SNPs at pre-identified sites. However, compared to other methods evaluated in this study, a reference-free SNP analysis demonstrated optimal subtyping utility for type A(B) strains using de novo assembled genome sequences.


Asunto(s)
Botulismo/epidemiología , Botulismo/microbiología , Clostridium botulinum tipo A/clasificación , Clostridium botulinum tipo B/clasificación , Brotes de Enfermedades , Tipificación de Secuencias Multilocus , Clostridium botulinum tipo A/genética , Clostridium botulinum tipo A/aislamiento & purificación , Clostridium botulinum tipo B/genética , Clostridium botulinum tipo B/aislamiento & purificación , Análisis por Conglomerados , Dermatoglifia del ADN , Electroforesis en Gel de Campo Pulsado , Genoma Bacteriano , Genotipo , Humanos , Estados Unidos
3.
Astrobiology ; 23(8): 825-834, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37405744

RESUMEN

The Mars 2020 Flight System comprises a Cruise Stage; Aeroshell; Entry, Descent, and Landing system; Perseverance rover; and the Ingenuity helicopter. The Perseverance rover was successfully delivered to Jezero Crater on February 18, 2021. Among its science objectives, Perseverance is meant to search for rocks that are capable of preserving chemical traces of ancient life, if it existed, and to core and cache rock and regolith samples. The Perseverance rover is gathering samples for potential return to Earth as part of a Mars Sample Return campaign. Thus, controlling the presence of Earth-sourced biological contamination is important to protect the integrity of the scientific results as well as to comply with international treaty and NASA requirements governing Planetary Protection prior to launch. An unprecedented campaign of sampling and environmental monitoring occurred, which resulted in over 16,000 biological samples collected throughout spacecraft assembly. Engineering design, microbial reduction measures, monitoring, and process controls enabled the mission to limit the total spore bioburden to 3.73 × 105 spores, which provided 25.4% margin against the required limit. Furthermore, the total spore bioburden of all landed hardware was 3.86 × 104, which provided 87% margin against the required limit. This manuscript outlines the Planetary Protection implementation approach and verification methodologies applied to the Mars 2020 flight system and its surrounding environments.


Asunto(s)
Marte , Vuelo Espacial , Medio Ambiente Extraterrestre , Planetas , Nave Espacial , Planeta Tierra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA