Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Struct Funct ; 48(2): 135-144, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37394513

RESUMEN

We cloned and characterized two new coral fluorescent proteins: h2-3 and 1-41. h2-3 formed an obligate dimeric complex and exhibited bright green fluorescence. On the other hand, 1-41 formed a highly multimeric complex and exhibited dim red fluorescence. We engineered 1-41 into AzaleaB5, a practically useful red-emitting fluorescent protein for cellular labeling applications. We fused h2-3 and AzaleaB5 to the ubiquitination domains of human Geminin and Cdt1, respectively, to generate a new color variant of Fucci (Fluorescent Ubiquitination-based Cell-Cycle Indicator): Fucci5. We found Fucci5 provided more reliable nuclear labeling for monitoring cell-cycle progression than the 1st and 2nd generations that used mAG/mKO2 and mVenus/mCherry, respectively.Key words: fluorescent protein, cell cycle, time-lapse imaging, flow cytometry.


Asunto(s)
Proteínas de Ciclo Celular , Colorantes , Humanos , Color , División Celular , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Microscopía Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
2.
Mol Cell ; 58(1): 186-93, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25773597

RESUMEN

Crystallization of proteins may occur in the cytosol of a living cell, but how a cell responds to intracellular protein crystallization remains unknown. We developed a variant of coral fluorescent protein that forms diffraction-quality crystals within mammalian cells. This expression system allowed the direct determination of its crystal structure at 2.9 Å, as well as observation of the crystallization process and cellular responses. The micron-sized crystal, which emerged rapidly, was a pure assembly of properly folded ß-barrels and was recognized as an autophagic cargo that was transferred to lysosomes via a process involving p62 and LC3. Several lines of evidence indicated that autophagy was not required for crystal nucleation or growth. These findings demonstrate that in vivo protein crystals can provide an experimental model to study chemical catalysis. This knowledge may be beneficial for structural biology studies on normal and disease-related protein aggregation.


Asunto(s)
Antozoos/química , Citosol/metabolismo , Proteínas Fluorescentes Verdes/química , Lisosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagia , Cristalización , Cristalografía por Rayos X , Citosol/ultraestructura , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Lisosomas/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Neuronas/metabolismo , Neuronas/ultraestructura , Cultivo Primario de Células , Pliegue de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Sequestosoma-1 , Difracción de Rayos X
3.
Cell Struct Funct ; 43(1): 41-51, 2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29398689

RESUMEN

The Golgi apparatus is a key station of glycosylation and membrane traffic. It consists of stacked cisternae in most eukaryotes. However, the mechanisms how the Golgi stacks are formed and maintained are still obscure. The model plant Arabidopsis thaliana provides a nice system to observe Golgi structures by light microscopy, because the Golgi in A. thaliana is in the form of mini-stacks that are distributed throughout the cytoplasm. To obtain a clue to understand the molecular basis of Golgi morphology, we took a forward-genetic approach to isolate A. thaliana mutants that show abnormal structures of the Golgi under a confocal microscope. In the present report, we describe characterization of one of such mutants, named #46-3. The #46-3 mutant showed pleiotropic Golgi phenotypes. The Golgi size was in majority smaller than the wild type, but varied from very small ones, sometimes without clear association of cis and trans cisternae, to abnormally large ones under a confocal microscope. At the ultrastructual level by electron microscopy, queer-shaped large Golgi stacks were occasionally observed. By positional mapping, genome sequencing, and complementation and allelism tests, we linked the mutant phenotype to the missense mutation D374N in the NSF gene, encoding the N-ethylmaleimide-sensitive factor (NSF), a key component of membrane fusion. This residue is near the ATP-binding site of NSF, which is very well conserved in eukaryotes, suggesting that the biochemical function of NSF is important for maintaining the normal morphology of the Golgi.Key words: Golgi morphology, N-ethylmaleimide-sensitive factor (NSF), Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Aparato de Golgi/metabolismo , Proteínas Sensibles a N-Etilmaleimida/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Aparato de Golgi/patología , Aparato de Golgi/ultraestructura , Humanos , Fusión de Membrana , Microscopía Confocal , Microscopía Electrónica , Mutación Missense , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Fenotipo , Alineación de Secuencia
4.
Proc Natl Acad Sci U S A ; 106(31): 13106-11, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19620714

RESUMEN

Organelle movement is essential for proper function of living cells. In plants, these movements generally depend on actin filaments, but the underlying mechanism is unknown. Here, in Arabidopsis, we identify associations of short actin filaments along the chloroplast periphery on the plasma membrane side associated with chloroplast photorelocation and anchoring to the plasma membrane. We have termed these chloroplast-actin filaments (cp-actin filaments). Cp-actin filaments emerge from the chloroplast edge and exhibit rapid turnover. The presence of cp-actin filaments depends on an actin-binding protein, chloroplast unusual positioning1 (CHUP1), localized on the chloroplast envelope. chup1 mutant lacked cp-actin filaments but showed normal cytoplasmic actin filaments. When irradiated with blue light to induce chloroplast movement, cp-actin filaments relocalize to the leading edge of chloroplasts before and during photorelocation and are regulated by 2 phototropins, phot1 and phot2. Our findings suggest that plants evolved a unique actin-based mechanism for organelle movement.


Asunto(s)
Actinas/fisiología , Arabidopsis/fisiología , Cloroplastos/fisiología , Proteínas de Arabidopsis/fisiología , Membrana Celular/química , Proteínas de Cloroplastos , Criptocromos , Flavoproteínas/fisiología , Fluorescencia , Proteínas Fluorescentes Verdes , Luz , Proteínas de Microfilamentos/fisiología , Microtúbulos/fisiología , Movimiento
5.
Front Mol Neurosci ; 7: 93, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25505870

RESUMEN

Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its ß-barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3°) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential.

6.
Mol Biol Cell ; 23(16): 3203-14, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22740633

RESUMEN

The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.


Asunto(s)
Brefeldino A/farmacología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Nicotiana/citología , Inhibidores de la Síntesis de la Proteína/farmacología , Citoesqueleto de Actina/metabolismo , Proteínas Bacterianas/metabolismo , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Imagen de Lapso de Tiempo
7.
Plant Cell ; 20(11): 3006-21, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18984676

RESUMEN

The SNARE complex is a key regulator of vesicular traffic, executing membrane fusion between transport vesicles or organelles and target membranes. A functional SNARE complex consists of four coiled-coil helical bundles, three of which are supplied by Q-SNAREs and another from an R-SNARE. Arabidopsis thaliana VAMP727 is an R-SNARE, with homologs only in seed plants. We have found that VAMP727 colocalizes with SYP22/ VAM3, a Q-SNARE, on a subpopulation of prevacuolar compartments/endosomes closely associated with the vacuolar membrane. Genetic and biochemical analyses, including examination of a synergistic interaction of vamp727 and syp22 mutations, histological examination of protein localization, and coimmunoprecipitation from Arabidopsis lysates indicate that VAMP727 forms a complex with SYP22, VTI11, and SYP51 and that this complex plays a crucial role in vacuolar transport, seed maturation, and vacuole biogenesis. We suggest that the VAMP727 complex mediates the membrane fusion between the prevacuolar compartment and the vacuole and that this process has evolved as an essential step for seed development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Semillas/crecimiento & desarrollo , Vacuolas/metabolismo , Oxidorreductasas de Alcohol , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fusión de Membrana , Microscopía Electrónica , Transporte de Proteínas , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/genética , ARN de Planta/genética , Semillas/genética , Semillas/ultraestructura
8.
EMBO J ; 21(6): 1267-79, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11889033

RESUMEN

We previously showed that the ANGUSTIFOLIA (AN) gene regulates the width of leaves of Arabidopsis thaliana, by controlling the polar elongation of leaf cells. In the present study, we found that the abnormal arrangement of cortical microtubules (MTs) in an leaf cells appeared to account entirely for the abnormal shape of the cells. It suggested that the AN gene might regulate the polarity of cell growth by controlling the arrangement of cortical MTs. We cloned the AN gene using a map-based strategy and identified it as the first member of the CtBP family to be found in plants. Wild-type AN cDNA reversed the narrow-leaved phenotype and the abnormal arrangement of cortical MTs of the an-1 mutation. In the animal kingdom, CtBPs self-associate and act as co-repressors of transcription. The AN protein can also self-associate in the yeast two-hybrid system. Furthermore, microarray analysis suggested that the AN gene might regulate the expression of certain genes, e.g. the gene involved in formation of cell walls, MERI5. A discussion of the molecular mechanisms involved in the leaf shape regulation is presented based on our observations.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Proteínas de Unión al ADN/fisiología , Genes de Plantas/fisiología , Proteínas Represoras/fisiología , Oxidorreductasas de Alcohol , Secuencia de Aminoácidos , Animales , Arabidopsis , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tamaño de la Célula , Pared Celular , Clonación Molecular , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Glicosiltransferasas , Meristema , Ratones , Microtúbulos , Datos de Secuencia Molecular , Mutagénesis , Fosfoproteínas/clasificación , Hojas de la Planta/citología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Represoras/clasificación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA