RESUMEN
Little is known about mechanisms of membrane fission in bacteria despite their requirement for cytokinesis. The only known dedicated membrane fission machinery in bacteria, fission protein B (FisB), is expressed during sporulation in Bacillus subtilis and is required to release the developing spore into the mother cell cytoplasm. Here, we characterized the requirements for FisB-mediated membrane fission. FisB forms mobile clusters of approximately 12 molecules that give way to an immobile cluster at the engulfment pole containing approximately 40 proteins at the time of membrane fission. Analysis of FisB mutants revealed that binding to acidic lipids and homo-oligomerization are both critical for targeting FisB to the engulfment pole and membrane fission. Experiments using artificial membranes and filamentous cells suggest that FisB does not have an intrinsic ability to sense or induce membrane curvature but can bridge membranes. Finally, modeling suggests that homo-oligomerization and trans-interactions with membranes are sufficient to explain FisB accumulation at the membrane neck that connects the engulfment membrane to the rest of the mother cell membrane during late stages of engulfment. Together, our results show that FisB is a robust and unusual membrane fission protein that relies on homo-oligomerization, lipid binding, and the unique membrane topology generated during engulfment for localization and membrane scission, but surprisingly, not on lipid microdomains, negative-curvature lipids, or curvature sensing.
Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Multimerización de Proteína , Proteínas Bacterianas/química , Catálisis , Clostridium perfringens/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios ProteicosRESUMEN
Semi-conservative segregation of nucleosomes to sister chromatids during DNA replication creates gaps that must be filled by new nucleosome assembly. We analyzed the cell-cycle timing of centromeric chromatin assembly in Drosophila, which contains the H3 variant CID (CENP-A in humans), as well as CENP-C and CAL1, which are required for CID localization. Pulse-chase experiments show that CID and CENP-C levels decrease by 50% at each cell division, as predicted for semi-conservative segregation and inheritance, whereas CAL1 displays higher turnover. Quench-chase-pulse experiments demonstrate that there is a significant lag between replication and replenishment of centromeric chromatin. Surprisingly, new CID is recruited to centromeres in metaphase, by a mechanism that does not require an intact mitotic spindle, but does require proteasome activity. Interestingly, new CAL1 is recruited to centromeres before CID in prophase. Furthermore, CAL1, but not CENP-C, is found in complex with pre-nucleosomal CID. Finally, CENP-C displays yet a different pattern of incorporation, during both interphase and mitosis. The unusual timing of CID recruitment and unique dynamics of CAL1 identify a distinct centromere assembly pathway in Drosophila and suggest that CAL1 is a key regulator of centromere propagation.
Asunto(s)
Centrómero , Cromatina/metabolismo , Mitosis , Animales , Ciclina A/metabolismo , Drosophila , Humanos , Metafase , Microtúbulos/metabolismo , Profase , Complejo de la Endopetidasa Proteasomal/metabolismoRESUMEN
Highly microporous carbons have been synthesized from four types of agro-wastes of lignin, walnut shells, orange peels and apricot seeds by one-step carbonization/activation with potassium hydroxide (KOH) in varying ratios. The resultant carbons demonstrated BET specific surface areas of 727-2254â¯m2/g, and total pore volumes 0.34-1.14â¯cm3/g. These are higher than the majority of agro-waste derived carbons reported in the literature. For all the carbons, CO2 adsorption at 298â¯K was higher than SF6 followed by N2 suggesting a possible separation of CO2 and SF6 from N2. The adsorbed amounts of CO2 at 298â¯K and 273â¯K and at pressures up to 760â¯Torr were 7.24 and 9.4â¯mmol/g, respectively which, to the best of our knowledge, are the highest CO2 uptakes in these temperatures by any carbon material reported so far. For all the gases, selectivity, mixed adsorption isotherms and adsorption breakthrough have been simulated from experimental data.
Asunto(s)
Carbono , Gases de Efecto Invernadero , Nanoporos , Adsorción , Dióxido de CarbonoRESUMEN
In response to intracellular stress events ranging from starvation to pathogen invasion, the cell activates one or more forms of macroautophagy. The key event in these related pathways is the de novo formation of a new organelle called the autophagosome, which either surrounds and sequesters random portions of the cytoplasm or selectively targets individual intracellular challenges. Thus, the autophagosome is a flexible membrane platform with dimensions that ultimately depend upon the target cargo. The intermediate membrane, termed the phagophore or isolation membrane, is a cup-like structure with a clear concave face and a highly curved rim. The phagophore is largely devoid of integral membrane proteins; thus, its shape and size are governed by peripherally associated membrane proteins and possibly by the lipid composition of the membrane itself. Growth along the phagophore rim marks the progress of both organelle expansion and ultimately organelle closure around a particular cargo. These two properties, a reliance on peripheral membrane proteins and a structurally distinct membrane architecture, suggest that the ability to target or manipulate membrane curvature might be an essential activity of proteins functioning in this pathway. In this review, we discuss the extent to which membranes are naturally curved at each of the cellular sites believed to engage in autophagosome formation, review basic mechanisms used to sense this curvature, and then summarize the existing literature concerning which autophagy proteins are capable of curvature recognition.
Asunto(s)
Autofagosomas , Autofagia , Membrana Celular/fisiología , Proteínas de la Membrana/metabolismo , Animales , Humanos , Proteínas/químicaRESUMEN
Autophagy is a conserved membrane transport pathway used to destroy pathogenic microbes that access the cytosol of cells. The intracellular pathogen Legionella pneumophila interferes with autophagy by delivering an effector protein, RavZ, into the host cytosol. RavZ acts by cleaving membrane-conjugated Atg8/LC3 proteins from pre-autophagosomal structures. Its remarkable efficiency allows minute quantities of RavZ to block autophagy throughout the cell. To understand how RavZ targets pre-autophagosomes and specifically acts only on membrane-associated Atg8 proteins, we elucidated its structure. Revealed is a catalytic domain related in fold to Ulp family deubiquitinase-like enzymes and a C-terminal PI3P-binding module. RavZ targets the autophagosome via the PI3P-binding module and a catalytic domain helix, and it preferentially binds high-curvature membranes, intimating localization to highly curved domains in autophagosome intermediate membranes. RavZ-membrane interactions enhance substrate affinity, providing a mechanism for interfacial activation that also may be used by host autophagy proteins engaging only lipidated Atg8 proteins.
Asunto(s)
Autofagia/fisiología , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Animales , Legionella , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica/fisiología , Transporte de ProteínasRESUMEN
The components supporting autophagosome growth on the cup-like isolation membrane are likely to be different from those found on closed and maturing autophagosomes. The highly curved rim of the cup may serve as a functionally required surface for transiently associated components of the early acting autophagic machinery. Here we demonstrate that the E2-like enzyme, Atg3, facilitates LC3/GABARAP lipidation only on membranes exhibiting local lipid-packing defects. This activity requires an amino-terminal amphipathic helix similar to motifs found on proteins targeting highly curved intracellular membranes. By tuning the hydrophobicity of this motif, we can promote or inhibit lipidation in vitro and in rescue experiments in Atg3-knockout cells, implying a physiologic role for this stress detection. The need for extensive lipid-packing defects suggests that Atg3 is designed to work at highly curved membranes, perhaps including the limiting edge of the growing phagophore.