Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Fish Shellfish Immunol ; 145: 109350, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168633

RESUMEN

The transforming growth factor beta regulator 1 (TBRG1) is a growth inhibitory protein that acts as a tumor suppressor in human cancers, gaining its name for the transcriptional regulation by TGF-ß. While extensive research has been conducted on the tumor-related function of TBRG1 in mammals, its significance in invertebrates remains largely unexplored. In this study, a homolog of TBRG1 was first structurally and functionally analyzed in the red swamp crayfish Procambarus clarkii. The full-length cDNA sequence was 2143 base pairs (bp) with a 1305 bp open reading frame (ORF) encoding a deduced protein of 434 amino acids (aa). The changes of PcTBRG1 transcripts upon immune challenges indicated its involvement in innate immunity. After knocking down PcTBRG1, the decline of bacteria clearance capacity revealed the participation of PcTBRG1 in the immune response. Furthermore, the downregulation of AMPs' expression after the cotreatment of RNAi and bacteria challenge suggested that PcTBRG1 might participate in innate immunity through regulating AMPs' expression. These results provided initial insight into the immune-related function of TBRG1 in invertebrates.


Asunto(s)
Astacoidea , Regulación de la Expresión Génica , Humanos , Animales , Secuencia de Aminoácidos , Inmunidad Innata/genética , Interferencia de ARN , Proteínas de Artrópodos/genética , Mamíferos , Proteínas Nucleares/genética , Péptidos y Proteínas de Señalización Intracelular/genética
2.
Fish Shellfish Immunol ; 140: 108931, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37437824

RESUMEN

Endoplasmic reticulum oxidoreductase 1 (ERO1) is an important mediator in regulating disulfide bond formation and maintaining endoplasmic reticulum homeostasis. Its activity is transcriptionally regulated by the unfolded protein response (UPR) in the endoplasmic reticulum, which is known to be essential in immunity. However, whether ERO1 is involved in innate immunity in invertebrates remains unclear. In the present study, two subtypes of ERO1 from Scylla paramamosain were first identified and characterized. Sequence analysis revealed the conserved ERO1 domain and the oxidative capacity assay verified the oxidative capacity of SpERO1 recombinant protein. Moreover, SpERO1s were found to be ubiquitously expressed in all the tested tissues, with the highest expression observed in hemocytes. Two SpERO1s exhibited distinct expression patterns in response to Vibrio alginolyticus and White Spot Syndrome Virus (WSSV). Importantly, the downregulation of the expression of immune factors upon bacterial challenge in SpERO1-silenced crabs was observed. These results provided an initial foundation for further investigations into the role of ERO1 in the innate immunity of invertebrates.


Asunto(s)
Braquiuros , Animales , Oxidorreductasas , Inmunidad Innata/genética , Bacterias/metabolismo , Proteínas Recombinantes , Proteínas de Artrópodos , Filogenia , Hemocitos , Perfilación de la Expresión Génica
3.
Fish Shellfish Immunol ; 140: 108944, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37451527

RESUMEN

Cytosolic phospholipase A2 (cPLA2) specifically liberates the arachidonic acids from the phospholipid substrates. In mammals, cPLA2 serves as a key control point in inflammatory responses due to its diverse downstream products. However, the role of cPLA2 in animals lower than mammals largely remains unknown. In the current research, a homolog of cPLA2 was first identified and characterized in the red swamp crayfish Procambarus clarkii. The full-length cDNA of PccPLA2 was 4432 bp in length with a 3036 bp-long open reading frame, encoding a putative protein of 1011 amino acids that contained a protein kinase C conserved region 2 and a catalytic subunit of cPLA2. PccPLA2 was ubiquitously expressed in all examined tissues with the highest expression in the hepatopancreas, and the expression in hemocytes as well as hepatopancreas was induced upon the immune challenges of WSSV and Aeromonas hydrophila. After the co-treatment of RNA interference and bacterial infection, the decline of bacteria clearance capability was observed in the hemolymph, and the expression of some antimicrobial peptides (AMPs) was significantly suppressed. Additionally, the phagocytosis of A. hydrophila by primary hemocytes decreased when treated with the specific inhibitor CAY10650 of cPLA2. These results indicated the participation of PccPLA2 in both cellular and humoral immune responses in the crayfish, which provided an insight into the role that cPLA2 played in the innate immunity of crustaceans, and even in invertebrates.


Asunto(s)
Astacoidea , Inmunidad Innata , Animales , Secuencia de Aminoácidos , Inmunidad Innata/genética , Fosfolipasas A2 , Fosfolipasas A2 Citosólicas , Proteínas de Artrópodos , Mamíferos
4.
Fish Shellfish Immunol ; 143: 109183, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884105

RESUMEN

Smad,a member of the TGF-ß superfamily,controls cell proliferation,growth and guiding cell differentiation, thus playing a crucial role in diseases. However, the presence as well as specific function of Smad in crabs is still unknown. In this study, two Smads (Smad1 and Smad2/3) were identified for the first time from the mud crab Scylla paramamosain. The complete open reading frames of SpSmad1 and SpSmad2/3 were 1,497bp and 1,338bp, encoding deduced proteins of 498 and 445 amino acids respectively. Moreover, under the administration of Vibrio alginolyticus and WSSV, the relative expression levels of SpSmad1 and SpSmad2/3 were significantly increased, indicating their involvement in the innate immune response of mud crabs. Knockdown of SpSmad1 and SpSmad2/3 in vivo not only led to the increasement of the expressions of NF-κB signaling genes and antimicrobial peptides genes, but also significantly affected the bacterial clearance process of mud crabs. Additionally, overexpression of SpSmad1 and SpSmad2/3 in HEK293T cells could markedly activate NF-κB signaling. These results indicated that Smad1 and Smad2/3 participated in the innate immunity of Scylla paramamosain, and might provide a better understanding of the presence and immune regulatory functions of Smad1 and Smad2/3 in crabs and even invertebrates.


Asunto(s)
Braquiuros , FN-kappa B , Humanos , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Drosophila/genética , Drosophila/metabolismo , Células HEK293 , Filogenia , Proteínas de Artrópodos , Inmunidad Innata/genética , Perfilación de la Expresión Génica
5.
J Invertebr Pathol ; 196: 107865, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36436575

RESUMEN

FGFRs involved multiple physiological processes, such as endocrine homeostasis, wound repair, and cellular behaviors including proliferation, differentiation and survival. In the present study, the homologs of fibroblast growth factor receptor 4 (FGFR4) were identified and characterized from the red swamp crayfish Procambarus clarkii for the first time. The full-length cDNAs of pcFGFR4 were 2878 bp with 2451 bp open reading frame (ORF), respectively. The deduced pcFGFR4 protein contained an immunoglobulin, two immunoglobulin C-2 Type, a transmembrane region and a catalytic domain. Real-time PCR analysis showed that pcFGFR4 were highly expressed in muscle and hemocyte. Moreover, the expression levels of pcFGFR4 in the hepatopancreas and hemocyte were positively stimulated after challenge with Aeromonas hydrophila and WSSV, implying the involvement of pcFGFR4 against bacterial and viral infections in innate immune responses. While pcFGFR4 were silenced in vivo, the expression levels of antimicrobial peptide (AMP) genes (pcALF1-5,8 and pcCrustin1-2) and NF-κB signaling components (pcDrosal and pcRelish) were significantly reduced. Additionally, NF-κB signaling could be markedly activated by overexpression of pcFGFR4 in HEK293T cells. Finally, our results indicated that pcFGFR4 regulated crayfish's innate immunity by modulating NF-κB signaling. These findings may provide new insights into pcFGFR4-mediated signaling cascades in crustaceans and provide a better understanding of crustacean innate immune system.


Asunto(s)
Antivirales , Astacoidea , Animales , Humanos , Astacoidea/microbiología , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , FN-kappa B/genética , Células HEK293 , Perfilación de la Expresión Génica , Inmunidad Innata/genética , Proteínas de Artrópodos
6.
Fish Shellfish Immunol ; 131: 1255-1263, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36427760

RESUMEN

Drosophila mothers against decapentaplegic proteins (Smads), the crucial signal transducers in activating downstream gene transcription through transforming growth factor beta (TGF-ß) receptors, are the pleiotropic factors with important role in mediating cell proliferation, homeostasis, differentiation, apoptosis and immune response. However, whether Smads are involved in immune response in crustaceans remains unexplored. In the present study, the Smad3 and Smad4 were firstly identified and functionally characterized from the Red Swamp Crayfish Procambarus clarkii. The full-length cDNAs of pcSmad3 and pcSmad4 were 1, 670 bp and 3, 060 bp with 1, 326 bp and 1, 875 bp open reading frame (ORF), respectively. Real-time PCR analysis of the expression profiles demonstrated that pcSmad3 and pcSmad4 were predominantly expressed at in stomach, heart, and hemocytes. Notably, the expression levels of pcSmad3 and pcSmad4 both Aeromonas hydrophila and WSSV challenges were significantly altered, suggesting the involvement of pcSmad3 and pcSmad4 in innate immune responses. Knockdown of pcSmad3 and pcSmad4 in vivo dramatically activated the transcriptions of NF-κB signaling genes and anti-lipopolysaccharide factor genes. The overexpression of pcSmad3 and pcSmad4 could significantly activate NF-κB signaling in HEK293T cells. Meanwhile, the clearance of bacteria was significantly reduced with knockdown of pcSmad3 and pcSmad4 in vivo. Results indicated that pcSmad3 and pcSmad4 played an immune-regulatory role in crayfish's innate immunity, which might pave the for a better understanding of the TGF-ß superfamily members in crustacean.


Asunto(s)
Astacoidea , FN-kappa B , Animales , Humanos , Drosophila , Células HEK293 , Secuencia de Aminoácidos , Inmunidad Innata/genética , Factor de Crecimiento Transformador beta/genética , Proteínas de Artrópodos/genética
7.
Fish Shellfish Immunol ; 127: 13-22, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35667540

RESUMEN

Smads, part of signaling cascades that represent downstream pathways of the TGF-ß super family proteins, are pleiotropic cytokines with important role in mediating cell proliferation, homeostasis, differentiation, apoptosis and immune response. However, the specific functions of Smads remain unknown in crustaceans. In the present study, the drosophila mothers against decapentaplegic protein gene 1 (Smad1) was firstly identified and characterized from the Red Swamp Crayfish Procambarus clarkii. The obtained cDNA sequence of pcSmad1was 2, 503 bp long with a 1, 488 bp open reading fame, which encoded a putative protein of 496 amino acids. Furthermore, pcSmad1 responded to both Aeromonas hydrophila and WSSV challenge, suggesting the involvement of pcSmad1 in innate immune responses. Knockdown of pcSmad1 in vivo dramatically increased the expressions of NF-κB signaling genes and anti-lipopolysaccharide factor genes. Additionally, overexpression of pcSmad1 in HEK293T cells could markedly activate NF-κB signaling. Taken together, these results indicated that pcSmad1 played an immune-regulatory role in crayfish's innate immunity, which may provide a better understanding of TGF-ß superfamily members in crustacean.


Asunto(s)
Astacoidea , Drosophila , Animales , Proteínas de Artrópodos , Astacoidea/genética , Células HEK293 , Humanos , Inmunidad Innata/genética , FN-kappa B , Factor de Crecimiento Transformador beta/genética
8.
Fish Shellfish Immunol ; 131: 602-611, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36064005

RESUMEN

The fibroblast growth factor receptor (FGFR) belongs to the tyrosine kinase family consisting of four members (FGFR1-4). This study involved identification and characterization of FGFR1 and FGFR3 from mud crab Scylla paramamosain for the first time. The obtained cDNAs of SpFGFR1 and SpFGFR3 were 2,380 bp and 2,982 bp in length with a 1,503 bp and 2,310 bp open reading frame, respectively. The predicted SpFGFR1 protein included three immunoglobulin domains and a transmembrane region, while SpFGFR3 protein possessed a typical TyrKc (Tyrosine kinase, catalytic) domain. Real-time PCR analysis showed that SpFGFR1 and SpFGFR3 were highly expressed in the hepatopancreas. Furthermore, the expression levels of SpFGFR1 and SpFGFR3 in the hepatopancreas were enhanced following challenges with Vibro alginolyticus, Staphylococcus aureus, Poly (I:C) and White spot syndrome virus, which shows the involvement of SpFGFR1 and SpFGFR3 in innate immune response to infections from bacteria and virus. There was significant suppression of six antimicrobial peptide genes (SpALF1-5 and SpCrustin) and three NF-κB members (SpDorsal, SpIKK and SpRelish) when SpFGFR1 and SpFGFR3 was interfered in vivo. Also, treatment of the hemocytes with specific inhibitor of SpFGFR for 24 h consistently down-regulated SpDorsal, SpRelish and AMPs. These results suggested that SpFGFR1 and SpFGFR3 played important roles in regulating the Toll signaling pathway and immune deficiency (IMD) pathway through NF-κB signaling pathway. These findings may provide new insights into the role of FGFRs in the innate immune function of crustaceans.


Asunto(s)
Braquiuros , Animales , FN-kappa B/metabolismo , Proteínas de Artrópodos , Receptores de Factores de Crecimiento de Fibroblastos/genética , Filogenia , Inmunidad Innata/genética , Transducción de Señal , Poli I-C/farmacología , Proteínas Tirosina Quinasas/genética
9.
Fish Shellfish Immunol ; 105: 41-52, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32629101

RESUMEN

Transforming growth factor-ß type III receptor (TßR3), as a co-receptor of TGF-ß superfamily, plays critical roles in development and growth as well as some disease pathogeneses by presenting ligands to other receptors in vertebrates. However, the identification and functional characterization of TßR3 had not been reported yet in invertebrates. In the present study, TßR3 was first identified and characterized in mud crab Scylla paramamosain. The obtained cDNA length of SpTßR3 was 2, 424 bp with a 1, 854 bp open reading frame, which encoded a putative peptide of 617 amino acids containing a typical transmembrane region and a Zona pellucida (ZP) domain. Real-time PCR results showed that SpTßR3 was predominantly expressed at early embryonic development stage and early postmolt stage, suggesting its participation in development and growth. We report, for the first time in invertebrates, the challenge of both Vibro alginolyticus and Poly (I:C) could alter the expression patterns of SpTßR3. Notably, the expression levels of SpIKK, two NF-κB members (SpRelish and SpDorsal), and five antimicrobial peptide genes (SpCrustin and SpALF1-4) were significantly suppressed when SpTßR3 was interfered in vivo. Secondly, the overexpression of SpTßR3 in vitro could activate NF-κB signaling through the dual-luciferase reporter assays. Furthermore, the bacterial clearance assay after SpTßR3 was silenced in vivo highlighted the potential of SpTßR3 in activating the innate immune responses. These results implied the involvement of SpTßR3 in the innate immune responses by regulating the NF-κB pathway. This study first indicated that TßR3 was present in invertebrate, and it participated in not only the development and growth but also the innate immunity of S. paramamosain. It also provided new insights into the origin or evolution of TGF-ß receptors in crustacean species and even in invertebrates.


Asunto(s)
Braquiuros/genética , Braquiuros/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Transducción de Señal/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Perfilación de la Expresión Génica , Filogenia , Poli I-C/farmacología , Receptores de Factores de Crecimiento Transformadores beta/química , Alineación de Secuencia , Vibrio alginolyticus/fisiología
10.
Fish Shellfish Immunol ; 90: 80-90, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31022453

RESUMEN

Transforming growth factor-ß-activating kinase 1 (TAK1) is essential for diverse important biological functions, such as innate immunity, development and cell survival. In the present study, the homologs of TAK1 and TAK1-binding protein 1 (TAB1) were identified and characterized from mud crab Scylla paramamosain for the first time. The full-length cDNAs of SpTAK1 and SpTAB1 were 2, 226 bp and 2, 433 bp with 1, 782 bp and 1, 533 bp open reading frame (ORF), respectively. The deduced SpTAK1 protein contained a conserved S_TKc (Serine/threonine protein kinases, catalytic) domain, and the putative SpTAB1 protein possessed a typical PP2Cc (Serine/threonine phosphatases, family 2C, catalytic) domain and a potential TAK1 docking motif. Real-time PCR analysis showed that SpTAK1 and SpTAB1 were highly expressed at early development stages, suggesting their participation in crab's development process. Moreover, the expression levels of SpTAK1 and SpTAB1 in hepatopancreas were positively stimulated after challenge with Vibro alginolyticus and Poly (I:C), implying the involvement of SpTAK1 and SpTAB1 in innate immune responses against both bacterial and viral infections. When SpTAK1 or SpTAB1 were silenced in vivo, the expression levels of two IMDNFκB signaling components (SpIKKß and SpRelish) and six antimicrobial peptide (AMP) genes (SpALF1-5 and SpCrustin) were significantly reduced, and the bacteria clearance capacity of crabs was also markedly impaired in SpTAK1 or SpTAB1 silenced crabs. Additionally, overexpression of SpTAK1 and SpTAB1 in HEK293T cells could markedly activate the mammalian NF-κB signaling. Collectively, our results suggested that TAK1 and TAB1 regulated crab's innate immunity via modulating the IMDNFκB signaling. These findings may provide new insights into the TAK1/TAB1-mediated signaling cascades in crustaceans and pave the way for a better understanding of crustacean innate immune system.


Asunto(s)
Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Braquiuros/genética , Braquiuros/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Perfilación de la Expresión Génica , Quinasas Quinasa Quinasa PAM/química , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/inmunología , Filogenia , Alineación de Secuencia , Transducción de Señal/genética
11.
J Exp Biol ; 221(Pt 21)2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30190316

RESUMEN

Ambient temperature-associated stress can affect normal physiological functions in ectotherms. To assess the effects of cold or heat stress on amphibians, giant spiny frogs (Quasipaa spinosa) were acclimated at 22°C followed by exposure to 5°C or 30°C for 0, 3, 6, 12, 24 and 48 h, respectively. Histological alterations, apoptotic index, generation of mitochondrial reactive oxygen species (ROS), antioxidant activity indices and stress-response gene expression in frog livers were subsequently determined. Results showed that many fat droplets appeared after 12 h of heat stress and the percentage of melanomacrophage centres significantly changed after 48 h at both stress conditions. Furthermore, the mitochondrial ROS levels were elevated in a time-dependent manner up to 6 h and 12 h in the cold and heat stress groups, respectively. The activities of superoxide dismutase, glutathione peroxidase and catalase were successively increased with increasing periods of cold or heat exposure, and their gene expression levels showed similar changes in both stress conditions. Most tested heat shock protein (HSP) genes were sensitive to temperature exposure, and the expression profiles of most apoptosis-related genes was significantly upregulated at 3 and 48 h under cold and heat stress, respectively. Apoptotic index at 48 h under cold stress was significantly higher than that under heat stress. Notably, lipid droplets, HSP30, HSP70 and HSP110 might be suitable bioindicators of heat stress. The results of these alterations at physiological, biochemical and molecular levels might contribute to a better understanding of the stress response of Q. spinosa, and perhaps amphibians more generally, under thermal stress.


Asunto(s)
Anuros/fisiología , Respuesta al Choque por Frío/fisiología , Respuesta al Choque Térmico/fisiología , Hígado/fisiología , Mitocondrias/metabolismo , Transcriptoma , Animales , Antioxidantes/metabolismo , Anuros/genética , Apoptosis/fisiología , Respuesta al Choque por Frío/genética , Respuesta al Choque Térmico/genética , Hígado/citología , Hígado/ultraestructura , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo
12.
Fish Shellfish Immunol ; 81: 150-160, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30017928

RESUMEN

Immune deficiency (IMD) pathway, one of the most essential pattern recognition receptor signaling pathways, plays vital roles in innate immune responses to eliminate pathogen infection in invertebrates. In the present study, an immune deficiency (IMD) gene and two NF-κB family members, Relish and Dorsal, were identified and characterized in mud crab Scylla paramamosain for the first time. The deduced SpIMD, SpRelish and SpDorsal protein contained conserved death domain and classical NF-κB domains, respectively. Phylogenetic analysis suggested that SpIMD was classified into the invertebrate IMD branch, and SpRelish could be classified into the type I NF-κB class while SpDorsal could be grouped into the type II NF-κB class. Tissue distribution results showed these three genes were ubiquitously expressed in all tested tissues. The expression patterns of IMD signaling pathway and NF-κB genes, including SpIMD, SpIKKß, SpIKKε, SpRelish and SpDorsal, were distinct when crabs were stimulated with Vibro alginolyticus, indicating that they might be involved in responding to bacterial infection. When SpIMD was silenced by in vivo RNA interference assay, the expression levels of IMD pathway and antimicrobial peptides (AMPs) genes, including SpIKKß, SpRelish, SpALF1-6 and SpCrustin, were significantly down-regulated (p < 0.05). Correspondingly, the bacteria clearance ability of hemolymph was extremely impaired in IMD silenced crabs. Overall, the IMD played vital roles in innate immune response by regulating the expressions of its down-stream signaling genes and AMPs in S. paramamosain. These findings might pave the way for a better understanding of innate immune system and establish a fundamental network for the IMD signaling pathway in crustaceans.


Asunto(s)
Infecciones Bacterianas/inmunología , Braquiuros/inmunología , Inmunidad Innata , Transducción de Señal/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Braquiuros/genética , Perfilación de la Expresión Génica , Hemolinfa , FN-kappa B/genética , Filogenia , ARN , Vibriosis/inmunología , Vibrio alginolyticus
13.
Fish Shellfish Immunol ; 72: 459-469, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29108971

RESUMEN

Hemocytes play essential roles in the innate immune system of crustaceans. Characterization of hemocytes from estuary mud crab Scylla paramamosain was performed by flow cytometry and morphological studies such as cytochemical staining and electron microscopy. The hemocyte subsets were further separated using a modified Percoll density gradient centrifugation method. Based on the morphological characteristics of the cells, three distinct categories of hemocytes were identified: granulocytes with abundant large granularity representing 5.27 ± 0.42%, semigranulocytes with small or less granularity representing 76.03 ± 3.34%, and hyalinocytes (18.70 ± 3.92%) which were almost no granularity. The total hemocyte cell count and the percentage of hemocyte subsets varied after pathogen infection, including Vibrio alginolyticus and the viral double-stranded RNA analog Poly (I:C). The phagocytic process is of fundamental importance for crustaceans' cellular immune response as well as development and survival. The results of the in vitro phagocytosis assays analyzed by flow cytometry demonstrated that granulocytes and semigranulocytes had significantly higher phagocytic ability than hyalinocytes. A primary culture system, L-15 medium supplemented with 5-10% fetal bovine serum, was developed to further investigate the immune function of hemocytes. Furthermore, adenovirus can be utilized to effectively transfer GFP gene into hemocytes. Overall, three hemocyte sub-populations of S. paramamosain were successfully discriminated, moreover, their response to pathogen infections, phagocytic activity and adenovirus mediated transfection were also investigated for the first time. This study may contribute to a better understanding of the innate immune system of estuary crabs.


Asunto(s)
Braquiuros/inmunología , Hemocitos/inmunología , Inmunidad Innata , Poli I-C/farmacología , Vibrio alginolyticus/fisiología , Animales , Braquiuros/citología , Braquiuros/ultraestructura , Citometría de Flujo , Hemocitos/clasificación , Hemocitos/citología , Hemocitos/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Fagocitosis
14.
J Therm Biol ; 76: 115-125, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30143286

RESUMEN

Nuclear factor E2-related factor 2 (Nrf2) is a crucial transcription factor that regulates the basal and inducible expression of many antioxidant-relevant genes, and the Nrf2-mediated antioxidant pathway has been regarded as a critical switch in the initiation of cellular defence systems against oxidative damages. In this study, Nrf2 was first identified and characterized in the Chinese giant salamander (Andrias davidianus). A. davidianus was exposed to a high ambient temperature of 30 °C for various periods of time (0, 3, 6, 12, 24, 48 and 72 h). We investigated the effects of heat stress on alterations of the hepatic malondialdehyde (MDA) concentration, the activities of lactic acid dehydrogenase (LDH), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), the histology of the liver, and the mRNA expression patterns of 11 genes involved in the Nrf2-mediated antioxidant pathway in A. davidianus. The results showed that both the hepatic LDH activity and MDA content significantly increased after heat exposure, indicating that heat stress could induce cell injury and oxidative damage. Histological analysis of the liver showed that heat stress caused hepatocyte abnormalities, fat accumulation and ultrastructural alterations of the hepatocytes, endoplasmic reticulum and nuclei. The expression patterns of genes involved in the Nrf2-mediated antioxidant pathway in the liver were distinct when A. davidianus was exposed to heat stress. To the best of our knowledge, this study is the first on the characterization of Nrf2 in A. davidianus and even in amphibians. The results indicated that heat stress could induce oxidative damage, and the Nrf2 antioxidant pathway might play a critical role in the resistance against heat stress in A. davidianus. These findings will deepen and enrich the current knowledge on the evolutionary conserved antioxidant roles and mechanisms of Nrf2 in A. davidianus, or even in amphibians, in the antioxidant defence against heat stress.


Asunto(s)
Antioxidantes/metabolismo , Respuesta al Choque Térmico , Hígado/metabolismo , Hígado/patología , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Hígado/ultraestructura , Factor 2 Relacionado con NF-E2/aislamiento & purificación , Transducción de Señal , Temperatura , Urodelos
15.
Fish Shellfish Immunol ; 69: 119-127, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28743622

RESUMEN

Peroxiredoxin 5 (Prx5) belongs to a novel family of evolutionarily conserved antioxidant proteins that protect cells against various oxidative stresses. Generally, no more than one Prx5 transcript had been reported in non-primate species. In this study, two Prx5 genes (coined as SpPrx5-1 and SpPrx5-2) were firstly isolated from the mud crab, Scylla paramamosain, through RT-PCR and RACE methods. The open reading frame of SpPrx5-1 and SpPrx5-2 were 561 bp and 429 bp in length, encoding 186 and 142 amino acids polypeptide, respectively. Both the conserved signatures of peroxiredoxin catalytic center and Prx5-specific domain were identified in SpPrx5-1 and SpPrx5-2. Phylogenetic analysis indicated that both SpPrx5 clustered together with other animal Prx proteins and were classified into Prx5 subfamily. Tissue-specific expression analysis revealed that both SpPrx5-1 and SpPrx5-2 were ubiquitously expressed, highest in hepatopancreas, and showed remarkably similar transcription patterns. Quantitative RT-PCR analysis exhibited that both SpPrx5 genes changed dramatically in hepatopancreas, although showing different expression profiles, after virus-analog poly (I:C) or Vibrio alginolyticus challenge. The expression levels of both SpPrx5s were significantly enhanced in hepatopancreas after poly (I:C) stimulation, while SpPrx5-2 exhibited a more prompt response than SpPrx5-1. Nevertheless, the expression levels of both SpPrx5s were significantly reduced in hepatopancreas after Vibrio alginolyticus challenge in which SpPrx5-1 showed a more prompt response than SpPrx5-2. These results suggested the involvement of SpPrx5s in responses against viral and bacterial infections and further highlighted their functional importance in the immune system of Scylla paramamosain.


Asunto(s)
Braquiuros/genética , Braquiuros/inmunología , Inmunidad Innata , Peroxirredoxinas/genética , Peroxirredoxinas/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Peroxirredoxinas/química , Filogenia , Poli I-C/farmacología , Alineación de Secuencia , Vibrio alginolyticus/fisiología
16.
Fish Shellfish Immunol ; 70: 701-709, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28951219

RESUMEN

IL-16 is a pro-inflammatory cytokine originally designated as a lymphocyte chemoattractant factor. In mammal and avian, it has been characterized as an essential regulator of various cellular processes including cell recruitment and activation against pathogen invasion. So far, neither of the full-length of IL-16 homologue nor the response mechanism against pathogen was reported in crab species. In the present study, the pro-IL-16 homologue was firstly cloned and characterized from mud crab Scylla paramamosain. The full-length Sp-pro-IL-16 consisted of 4107 bp with an opening reading frame encoding 1369 amino acids. Multiple alignment analysis showed the putative amino acid sequence of Sp-pro-IL-16 had about 73.86% identity with Litopenaeus vannamei pro-IL-16. Additionally, two conserved PDZ domains and protein binding sites were found in Sp-pro-IL-16 and showed high similarities about 94.19% and 51.14% with their Litopenaeus vannamei and Mus musculus counterparts. RT-PCR analysis indicated that Sp-pro-IL-16 transcripts were constitutively expressed in all tissues examined with an extreme high level in hepatopancreas. Moreover, Sp-pro-IL-16 transcripts in hepatopancreas were significantly up-regulated 15-fold at 72 h after Vibrio alginolyticus challenge and 3.5-fold at 12 h after virus-analog Poly (I:C) challenge. The Western blot analysis revealed that Sp-pro-IL-16 can be cleaved to its bioactive form, an approximately 35 kDa mature IL-16, and the protein levels of both pro-IL-16 and mature IL-16 increased after Vibrio alginolyticus challenge. It is the first experimental identification of pro-inflammatory cytokine IL-16 in arthropods. This study could shed new light on further understanding of the response mechanism of pro-inflammatory cytokine IL-16 in Scylla paramamosain against pathogens. Meanwhile, it brought new insight into the origin and evolution of IL-16 in crab species.


Asunto(s)
Braquiuros/genética , Braquiuros/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Interleucina-16/genética , Interleucina-16/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Perfilación de la Expresión Génica , Interleucina-16/química , Filogenia , Poli I-C/farmacología , Distribución Aleatoria , Alineación de Secuencia , Transcriptoma , Vibrio alginolyticus/fisiología
17.
Artículo en Inglés | MEDLINE | ID: mdl-27591837

RESUMEN

Although iono-regulatory processes are critical for survival of crustaceans during the molt cycle, the mechanisms involved are still not clear. The Na+/K+/2Cl- cotransporter (NKCC), a SLC12A family protein that transports Na+, K+ and 2Cl- into cells, is essential for cell ionic and osmotic regulation. To better understand the role of NKCC in the molt osmoregulation, we cloned and characterized a NKCC gene from the mud crab, Scylla paramamosain (designated as SpNKCC). The predicted SpNKCC protein is well conserved, and phylogenetic analysis revealed that this protein was clustered with crustacean NKCC. Expression of SpNKCC was detected in all the tissues examined but was highest in the posterior gills. Transmission electron microscopy revealed that posterior gills had a thick type of epithelium for ion regulation while the anterior gills possessed a thin phenotype related to gas exchange. During the molting cycle, hemolymph osmolality and ion concentrations (Na+ and Cl-) increased significantly over the postmolt period, remained stable in the intermolt and premolt stages and then decreased at ecdysis. Meanwhile, the expression of SpNKCC mRNA was significantly elevated (26.7 to 338.8-fold) at the ion re-establishing stages (postmolt) as compared with baseline molt level. This pattern was consistent with the coordinated regulation of Na+/K+-ATPase α-subunit (NKA α), carbonic anhydrase cytoplasmic (CAc) isoform and Na+/H+ exchanger (NHE) genes in the posterior gills. These data suggest that SpNKCC may be important in mediating branchial ion uptake during the molt cycle, especially at the postmolt stages.


Asunto(s)
Crustáceos/metabolismo , ADN Complementario/genética , Branquias/metabolismo , Simportadores de Cloruro de Sodio-Potasio/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Crustáceos/fisiología , Muda , Concentración Osmolar , Homología de Secuencia de Aminoácido , Simportadores de Cloruro de Sodio-Potasio/química
18.
Environ Pollut ; 344: 123315, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185353

RESUMEN

Isoprothiolane (IPT) and tricyclazole (TCZ) are widely used in rice farming and recently in combined rice-fish farming. However, co-cultured animals are affected by these pesticides. To investigate the organismal effects and toxicity of pesticides, crayfish were exposed to 0, 1, 10, or 100 ppt TCZ or IPT for 7 days. Pesticide bioaccumulation, survival rate, metabolic parameters, structure of intestinal flora, and antioxidant-, apoptosis-, and HSP-related gene expression were determined. Pesticide exposure caused bioaccumulation of IPT or TCZ in the hepatopancreas and muscles of crayfish; however, IPT bioaccumulation was higher than that of TCZ. Both groups showed significant changes in hepatopancreatic serum biochemical parameters. Mitochondrial damage and chromosomal agglutination were observed in hepatopancreatic cells exposed to 100 ppt IPT or TCZ. IPT induced more significant changes in serum biochemical parameters than TCZ. The results of intestinal flora showed that Vibro, Flavobacterium, Anaerorhabdus and Shewanella may have potential for use as a bacterial marker of TCZ and IPT. Antioxidant-, apoptosis-, and HSP-related gene expression was disrupted by pesticide exposure, and was more seriously affected by IPT. The results suggest that IPT or TCZ induce hepatopancreatic cell toxicity; however, IPT or TCZ content in dietary crayfish exposed to 1 ppt was below the food safety residue standard. The data indicated that IPT exposure may be more toxic than TCZ exposure in hepatopancreas and intestines and toxicity of organism are alleviated by activating the pathway of stress-response, providing an understanding of pesticide compounds in rice-fish farming and food safety.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Plaguicidas , Tiazoles , Tiofenos , Animales , Antioxidantes/metabolismo , Plaguicidas/metabolismo , Astacoidea/metabolismo , Medición de Riesgo
19.
Mar Pollut Bull ; 196: 115672, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857059

RESUMEN

Benzophenones (BPs) are commonly used in personal care products like sunscreens and are increasingly being released into the environment, raising concerns about their potential ecotoxic effects. BPs as emerging environmental contaminants, little is known about their toxic effects on estuarine organisms. This study firstly investigated the toxic effects of five commonly used BPs on mud crabs (Scylla paramamosain). The crabs were exposed to varying concentrations of BPs for 14 days. The results showed that BPs caused damage to antioxidant systems in crabs. Transcriptome sequencing revealed that BP-3 and BP-1 had a greater impact on the crabs compared to the other BPs. Specifically, BP-1 and BP-3 caused severe damage to organelles and ribosomes. BP affected catalytic activity and hydrolase activity, BP-2 affected phosphoenolpyruate carboxykinase activity, and BP-4 affected tRNA aminoacylation and hydrolase activity. These findings can enhance our understanding of the ecotoxicity of BPs and may help to protect estuarine ecosystems.


Asunto(s)
Braquiuros , Animales , Braquiuros/genética , Benzofenonas , Ecosistema , Antioxidantes , Hidrolasas
20.
Artículo en Inglés | MEDLINE | ID: mdl-36184038

RESUMEN

Cadmium (Cd) is a heavy metal contaminant and can be toxic to environment. What's more, Selenium (Se) protects organism as heavy metal antagonist. The present study aimed to investigate whether inorganic (Na2SeO3) or organic (L-SeMc) Se have an effect on the Cd bioaccumulation, antioxidant and immunity of the mud crab (Scylla paramamosain) under Cd exposure. The study showed that the concentration of Cd in hepatopancreas under Cd exposure was higher than the inorganic or organic Se group (P < 0.05), notably, Cd concentration of hepatopancreas in organic Se treatment is less than that in inorganic Se treatment (P < 0.05). Furthermore, this study analyzed 28 gene expression about antioxidant and immune from transcriptome, the result indicated that L-SeMc (organic Se) can reduced intracellular ROS production and oxidative damage. Furthermore, apoptosis was enhanced after Cd exposure, but Se could protect against apoptosis via expression of cathepsin B. Consequently, Organic Se may have a better effect than inorganic Se on reducing Cd toxicity. This study could provide the molecular basis that Se might alleviate Cd toxicity and increases the understanding of the environmental contaminant on crustaceans.


Asunto(s)
Braquiuros , Selenio , Animales , Braquiuros/metabolismo , Hepatopáncreas/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Transcriptoma , Selenio/farmacología , Estuarios , Bioacumulación , Antioxidantes/metabolismo , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA