Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Urban Health ; 93(2): 364-78, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27000124

RESUMEN

Rapid urbanization is a key driver of the unique set of health risks facing urban populations. One of the most critical health hazards facing urban women is intimate partner violence (IPV). In post-conflict urban areas, women may face an even greater risk of IPV. Yet, few studies have examined the IPV experiences of urban-dwelling, conflict-affected women, including those who have been internally displaced. This study qualitatively examined the social and structural characteristics of the urban environment that contributed to the IPV experiences of women residing in post-conflict Abidjan, Côte d'Ivoire. Ten focus groups were conducted with men and women, both internally displaced (IDPs) and non-displaced. Lack of support networks, changing gender roles, and tensions between traditional gender norms and those of the "modern" city were reported as key contributors to IPV. Urban poverty and with it unemployment, food insecurity, and housing instability also played a role. Finally, IDPs faced heightened vulnerability to IPV as a result of displacement and discrimination. The relationship between economic strains and IPV are similar to other conflict-affected settings, but Abidjan's urban environment presented other unique characteristics contributing to IPV. Understanding these factors is crucial to designing appropriate services for women and for implementing IPV reduction interventions in urban areas. Strengthening formal and informal mechanisms for help-seeking, utilizing multi-modal interventions that address economic stress and challenge inequitable gender norms, as well as tailoring programs specifically for IDPs, are some considerations for IPV program planning focused on conflict-affected women in urban areas.


Asunto(s)
Violencia de Pareja , Población Urbana , Côte d'Ivoire/epidemiología , Femenino , Grupos Focales , Identidad de Género , Humanos , Violencia de Pareja/psicología , Masculino , Violación/psicología , Factores de Riesgo , Apoyo Social , Guerra
2.
Nat Med ; 3(1): 73-6, 1997 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8986744

RESUMEN

Apoptosis is a morphologically defined form of programmed cell death seen in a variety of circumstances, including immune cell selection, carcinogenesis and development. Apoptosis has very recently been seen after ischemic or traumatic injury to the central nervous system (CNS), suggesting that active cell death as well as passive necrosis may mediate damage after CNS injury. After spinal cord injury (SCI) in the rat, typical post-traumatic necrosis occurred, but in addition, apoptotic cells were found from 6 hours to 3 weeks after injury, especially in the spinal white matter. Apoptotic cells were positive for oligodendrocyte markers. After SCI in monkeys, apoptotic cells were found within remote degenerating fiber tracts. Both secondary degeneration at the site of SCI and the chronic demyelination of tracts away from the injury appear to be due in part to apoptosis. As cytokines have been shown to mediate oligodendrocyte death in vitro, it seems likely that chronic demyelination after CNS injury shares features with chronic degenerative disorders like multiple sclerosis.


Asunto(s)
Apoptosis/fisiología , Degeneración Nerviosa , Traumatismos de la Médula Espinal/patología , Animales , Axones , Núcleo Celular/ultraestructura , Contusiones , Fragmentación del ADN , Macaca mulatta , Masculino , Neuronas/fisiología , Ratas , Ratas Endogámicas , Médula Espinal/anatomía & histología , Médula Espinal/patología , Factores de Tiempo , Degeneración Walleriana
3.
Science ; 255(5047): 983-6, 1992 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-1546295

RESUMEN

Ribonuclease footprinting of nascent messenger RNA within ternary complexes of vaccinia RNA polymerase revealed an RNA binding site that encompasses an 18-nucleotide RNA segment. The dimensions of the binding site did not change as the polymerase moved along the template. Capping of the 5' end of the RNA was cotranscriptional and was confined to nascent chains 31 nucleotides or greater in length. Purified capping enzyme formed a binary complex with RNA polymerase in solution in the absence of nucleic acid. These findings suggest a mechanism for cotranscriptional establishment of messenger RNA identity in eukaryotes.


Asunto(s)
Caperuzas de ARN , ARN Mensajero/biosíntesis , Transcripción Genética , Secuencia de Bases , Sistema Libre de Células , ADN/química , Células Eucariotas , Técnicas In Vitro , Datos de Secuencia Molecular , ARN Polimerasa II/metabolismo , Moldes Genéticos , Regiones Terminadoras Genéticas , Factores de Transcripción/fisiología , Virus Vaccinia
4.
Science ; 291(5501): 121-5, 2001 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-11141562

RESUMEN

All aspects of cellular RNA metabolism and the replication of many viruses require DExH/D proteins that manipulate RNA in a manner that requires nucleoside triphosphates. Although DExH/D proteins have been shown to unwind purified RNA duplexes, most RNA molecules in the cellular environment are complexed with proteins. It has therefore been speculated that DExH/D proteins may also affect RNA-protein interactions. We demonstrate that the DExH protein NPH-II from vaccinia virus can displace the protein U1A from RNA in an active adenosine triphosphate-dependent fashion. NPH-II increases the rate of U1A dissociation by more than three orders of magnitude while retaining helicase processivity. This indicates that DExH/D proteins can effectively catalyze protein displacement from RNA and thereby participate in the structural reorganization of ribonucleoprotein assemblies.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , ARN Helicasas/metabolismo , Proteínas de Unión al ARN , ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Regiones no Traducidas 3'/metabolismo , Ácido Anhídrido Hidrolasas/química , Adenosina Trifosfato/metabolismo , Secuencia de Bases , Sitios de Unión , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Nucleósido-Trifosfatasa , Unión Proteica , Conformación Proteica , ARN/química , ARN Helicasas/química
5.
J Clin Invest ; 57(5): 1132-41, 1976 May.
Artículo en Inglés | MEDLINE | ID: mdl-177452

RESUMEN

These studies evaluated the influence of an initial exposure of thyroid slices to thyroid-stimulating hormone (TSH) on the subsequent responsiveness to the hormone. Bovine thyroid slices were incubated with or without 50 mU/ml TSH for varying periods and then incubated in hormone-free medium for varying periods. Subsequently, slices were incubated for 20 min with 10 mM theophylline and with or without TSH. Cylic AMP was measured after the third incubation. Phosphodiesterase and adenylate cylase were assayed in homogenates prepared from slices after the second incubation. In some experiments prostaglandin E1, puromycin, thyroxine, and triiodothyronine and propylthiouracil were included in the media. In other experiments, low does of TSH (1 AND 10 mU/ml) were used instead of 50 mU/ml. Slices previously exposed to TSH have decreased responsiveness of the adenylate cyclase-cylic AMP system. Such refractoriness is hormone specific since initial exposure to prostaglandin E1 decreases the subsequent response to this substance but not to TSH. Refractoriness to TSH develops only when the first incubation is at least 30 min. It is not reversed by 5 h of incubation without hormone. Incubation of thyroid slices with puromycin does not eliminate refractoriness. The decreased response to TSH cannot be explained by release of thyroxine, triiodothyronine, or iodide from the slices. Phosphodiesterase activity is not increased during the refractory period. The decreased cyclic AMP response to TSH is associated with diminished response of adenylate cyclase activity to the hormone. Guanosine triphosphate (1 mM) increased adenylate cyclase activity in both control and TSH treated tissue, but the effect was significantly less in the latter. Although with guanosine triphosphate, TSH increased adenylate cyclase activity in TSH treated tissue, the enzyme activity was still less than that present in control tissue incubated with guanosine triphosphate and TSH. NaF caused an equivalent stimulation of adenylate cyclase in both control and TSH treated tissue. These results suggest that the refractoriness represents an alteration in hormone binding or the coupling of the bound hormone to the adenylate cyclase activity rather than any modification of the catalytic site of the enzyme.


Asunto(s)
AMP Cíclico/metabolismo , Glándula Tiroides/metabolismo , Tirotropina/farmacología , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Animales , Bovinos , Perros , Fluoruros/farmacología , Guanosina Trifosfato/farmacología , Humanos , Técnicas In Vitro , Cinética , Prostaglandinas E/farmacología , Puromicina/farmacología , Ovinos , Especificidad de la Especie , Glándula Tiroides/efectos de los fármacos , Tiroxina/farmacología , Triyodotironina/farmacología
6.
Mol Cell Biol ; 15(11): 6222-31, 1995 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-7565775

RESUMEN

Vaccinia virus mRNA capping enzyme is a multifunctional protein with RNA triphosphatase, RNA guanylyltransferase, RNA (guanine-7) methyltransferase, and transcription termination factor activities. The protein is a heterodimer of 95- and 33-kDa subunits encoded by the vaccinia virus D1 and D12 genes, respectively. The capping reaction entails transfer of GMP from GTP to the 5'-diphosphate end of mRNA via a covalent enzyme-(lysyl-GMP) intermediate. The active site is situated at Lys-260 of the D1 subunit within a sequence element, KxDG (motif I), that is conserved in the capping enzymes from yeasts and other DNA viruses and at the active sites of covalent adenylylation of RNA and DNA ligases. Four additional sequence motifs (II to V) are conserved in the same order and with similar spacing among the capping enzymes and several ATP-dependent ligases. The relevance of these common sequence elements to the RNA capping reaction was addressed by mutational analysis of the vaccinia virus D1 protein. Nine alanine substitution mutations were targeted to motifs II to V. Histidine-tagged versions of the mutated D1 polypeptide were coexpressed in bacteria with the D12 subunit, and the His-tagged heterodimers were purified by Ni affinity and phosphocellulose chromatography steps. Whereas each of the mutated enzymes retained triphosphatase, methyltransferase, and termination factor activities, six of nine mutant enzymes were defective in some aspect of transguanylylation. Individual mutations in motifs III, IV, and V had distinctive effects on the affinity of enzyme for GTP, the rate of covalent catalysis (EpG formation), or the transfer of GMP from enzyme to RNA. These results are concordant with mutational studies of yeast RNA capping enzyme and suggest a conserved structural basis for covalent nucleotidyl transfer.


Asunto(s)
Proteínas de Unión al GTP/química , Nucleotidiltransferasas/química , Caperuzas de ARN/metabolismo , Virus Vaccinia/enzimología , Secuencia de Aminoácidos , Guanosina Monofosfato/metabolismo , Guanosina Trifosfato/metabolismo , Calor , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nucleotidiltransferasas/metabolismo , Desnaturalización Proteica , ARN/metabolismo , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Transcripción Genética
7.
Mol Cell Biol ; 20(21): 8059-68, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11027276

RESUMEN

Topoisomerase IB catalyzes recombinogenic DNA strand transfer reactions in vitro and in vivo. Here we characterize a new pathway of topoisomerase-mediated DNA ligation in vitro (flap ligation) in which vaccinia virus topoisomerase bound to a blunt-end DNA joins the covalently held strand to a 5' resected end of a duplex DNA containing a 3' tail. The joining reaction occurs with high efficiency when the sequence of the 3' tail is complementary to that of the scissile strand immediately 5' of the cleavage site. A 6-nucleotide segment of complementarity suffices for efficient flap ligation. Invasion of the flap into the duplex apparently occurs while topoisomerase remains bound to DNA, thereby implying a conformational flexibility of the topoisomerase clamp around the DNA target site. The 3' flap acceptor DNA mimics a processed end in the double-strand-break-repair recombination pathway. Our findings suggest that topoisomerase-induced breaks may be rectified by flap ligation, with ensuing genomic deletions or translocations.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Modelos Genéticos , Recombinación Genética , Emparejamiento Base , Secuencia de Bases , ADN/genética , ADN/metabolismo , Eliminación de Gen , Cinética , Datos de Secuencia Molecular , Plásmidos/metabolismo , Factores de Tiempo , Translocación Genética , Virus Vaccinia/enzimología , Virus Vaccinia/genética
8.
Mol Cell Biol ; 15(8): 4167-74, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7623811

RESUMEN

RNA (guanine-7-)methyltransferase, the enzyme responsible for methylating the 5' cap structure of eukaryotic mRNA, was isolated from extracts of Saccharomyces cerevisiae. The yeast enzyme catalyzed methyl group transfer from S-adenosyl-L-methionine to the guanosine base of capped, unmethylated poly(A). Cap methylation was stimulated by low concentrations of salt and was inhibited by S-adenosyl-L-homocysteine, a presumptive product of the reaction, but not by S-adenosyl-D-homocysteine. The methyltransferase sedimented in a glycerol gradient as a single discrete component of 3.2S. A likely candidate for the gene encoding yeast cap methyltransferase was singled out on phylogenetic grounds. The ABD1 gene, located on yeast chromosome II, encodes a 436-amino-acid (50-kDa) polypeptide that displays regional similarity to the catalytic domain of the vaccinia virus cap methyltransferase. That the ABD1 gene product is indeed RNA (guanine-7-)methyltransferase was established by expressing the ABD1 protein in bacteria, purifying the protein to homogeneity, and characterizing the cap methyltransferase activity intrinsic to recombinant ABD1. The physical and biochemical properties of recombinant ABD1 methyltransferase were indistinguishable from those of the cap methyltransferase isolated and partially purified from whole-cell yeast extracts. Our finding that the ABD1 gene is required for yeast growth provides the first genetic evidence that a cap methyltransferase (and, by inference, the cap methyl group) plays an essential role in cellular function in vivo.


Asunto(s)
Genes Fúngicos/genética , Genes Letales/genética , Metiltransferasas/genética , Caperuzas de ARN/biosíntesis , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Escherichia coli/genética , Metiltransferasas/biosíntesis , Metiltransferasas/aislamiento & purificación , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/biosíntesis , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
9.
Mol Cell Biol ; 16(2): 475-80, 1996 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8552073

RESUMEN

RNA (guanine-7-)-methyltransferase is the enzyme responsible for methylating the 5' cap structure of eukaryotic mRNA. The Saccharomyces cerevisiae enzyme is a 436-amino-acid protein encoded by the essential ABD1 gene. In this study, deletion and point mutations in ABD1 were tested for the ability to support growth of an abd1 null strain. Elimination of 109 amino acids from the N terminus had no effect on cell viability, whereas a more extensive N-terminal deletion of 155 residues was lethal, as was a C-terminal deletion of 55 amino acids. Alanine substitution mutations were introduced at eight conserved residues within a 206-amino-acid region of similarity between ABD1 and the methyltransferase domain of the vaccinia virus capping enzyme. ABD1 alleles H253A (encoding a substitution of alanine for histidine at position 253), T282A, E287A, E361A, and Y362A were viable, whereas G174A, D178A, and Y254A were either lethal or severely defective for growth. Alanine-substituted and amino-truncated ABD1 proteins were expressed in bacteria, purified, and tested for cap methyltransferase activity in vitro. Mutations that were viable in yeast cells had either no effect or only a moderate effect on the specific methyltransferase activity of the mutated ABD1 protein, whereas mutations that were deleterious in vivo yielded proteins that were catalytically defective in vitro. These findings substantiate for the first time the long-held presumption that cap methylation is an essential function in eukaryotic cells.


Asunto(s)
Genes Fúngicos , Genes Letales , Metiltransferasas/genética , Caperuzas de ARN/metabolismo , Saccharomyces cerevisiae/genética , Alanina/genética , Análisis Mutacional de ADN , Escherichia coli/genética , Metiltransferasas/metabolismo , Mutagénesis , Proteínas Recombinantes , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Eliminación de Secuencia
10.
Mol Cell Biol ; 18(9): 5189-98, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9710603

RESUMEN

We have characterized an essential Saccharomyces cerevisiae gene, CES5, that when present in high copy, suppresses the temperature-sensitive growth defect caused by the ceg1-25 mutation of the yeast mRNA guanylyltransferase (capping enzyme). CES5 is identical to CET1, which encodes the RNA triphosphatase component of the yeast capping apparatus. Purified recombinant Cet1 catalyzes hydrolysis of the gamma phosphate of triphosphate-terminated RNA at a rate of 1 s-1. Cet1 is a monomer in solution; it binds with recombinant Ceg1 in vitro to form a Cet1-Ceg1 heterodimer. The interaction of Cet1 with Ceg1 elicits >10-fold stimulation of the guanylyltransferase activity of Ceg1. This stimulation is the result of increased affinity for the GTP substrate. A truncated protein, Cet1(201-549), has RNA triphosphatase activity, heterodimerizes with and stimulates Ceg1 in vitro, and suffices when expressed in single copy for cell growth in vivo. The more extensively truncated derivative Cet1(246-549) also has RNA triphosphatase activity but fails to stimulate Ceg1 in vitro and is lethal when expressed in single copy in vivo. These data suggest that the Cet1-Ceg1 interaction is essential but do not resolve whether the triphosphatase activity is also necessary. The mammalian capping enzyme Mce1 (a bifunctional triphosphatase-guanylyltransferase) substitutes for Cet1 in vivo. A mutation of the triphosphatase active-site cysteine of Mce1 is lethal. Hence, an RNA triphosphatase activity is essential for eukaryotic cell growth. This work highlights the potential for regulating mRNA cap formation through protein-protein interactions.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Genes Fúngicos , Nucleotidiltransferasas/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Cromosomas Fúngicos , Clonación Molecular , Dimerización , Prueba de Complementación Genética , Cinética , Datos de Secuencia Molecular , Nucleotidiltransferasas/genética , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Alineación de Secuencia , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Supresión Genética
11.
Nucleic Acids Res ; 29(24): 4930-4, 2001 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11812821

RESUMEN

Escherichia coli DNA ligase (LigA) is the prototype of the NAD(+)-dependent class of DNA ligases found in all bacteria. Here we report the characterization of E.coli LigB, a second NAD(+)-dependent DNA ligase identified by virtue of its sequence similarity to LigA. LigB differs from LigA in that it lacks the BRCA1 C-terminus domain (BRCT) and two of the four Zn-binding cysteines that are present in LigA and all other bacterial NAD(+) ligases. We found that recombinant LigB catalyzed strand joining on a singly-nicked DNA in the presence of a divalent cation and NAD(+), and that LigB reacted with NAD(+) to form a covalent ligase-adenylate intermediate. Alanine substitution for the motif I lysine ((126)KxDG) abolished nick joining and ligase-adenylate formation by LigB, thus confirming that the ligase and adenylyltransferase activities are intrinsic to the LigB protein.


Asunto(s)
ADN Ligasas/metabolismo , Escherichia coli/enzimología , Alanina/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , ADN Ligasas/genética , ADN Ligasas/aislamiento & purificación , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Lisina/genética , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido
12.
Nucleic Acids Res ; 28(9): 1893-8, 2000 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-10756188

RESUMEN

The specificity of vaccinia topoisomerase for transesterification to DNA at the sequence 5'-CCCTT and its versatility in strand transfer have illuminated the recombinogenic properties of type IB topoisomerases and spawned topoisomerase-based strategies for DNA cloning. Here we characterize a pathway of topoisomerase-mediated DNA ligation in which enzyme bound covalently to a CCCTT end with an unpaired +1T nucleotide rapidly and efficiently joins the CCCTT strand to a duplex DNA containing a 3' A overhang. The joining reaction occurs with high efficiency, albeit slowly, to duplex DNAs containing 3' G, T or C overhangs. Strand transfer can be restricted to the correctly paired 3' A overhang by including 0.5 M NaCl in the ligation reaction mixture. The effects of base mismatches and increased ionic strength on the rates of 3' overhang ligation provide a quantitative picture of the relative contributions of +1 T:A base pairing and electrostatic interactions downstream of the scissile phosphate to the productive binding of an unlinked acceptor DNA to the active site. The results clarify the biochemistry underlying topoisomerase-cloning of PCR products with non-templated 3' overhangs.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN/metabolismo , Virus Vaccinia/enzimología , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Emparejamiento Base , Secuencia de Bases , ADN/genética , ADN Recombinante , Cinética , Datos de Secuencia Molecular , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Nucleótidos de Timina/genética , Nucleótidos de Timina/metabolismo
13.
Nucleic Acids Res ; 28(14): 2658-63, 2000 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-10908320

RESUMEN

Vaccinia virus DNA topoisomerase catalyzes resolution of synthetic Holliday junctions in vitro. The mechanism entails concerted transesterifications at two recognition sites, 5'-CCCTT/, that are opposed within a partially mobile four-way junction. Efficient resolution occurs on a junction with a 10 bp segment of branch mobility (5'-GCCCTTATCG) that extends 4 bp 3' of the scissile phosphate. Here we report that resolution is decreased when branch mobility is limited to an 8 bp segment extending 2 bp 3' of the cleavage site and then eliminated when branch mobility is confined to the 6 bp GCCCTT sequence 5' of the scissile phosphate. We surmise that a spacer region 3' of CCCTT is needed for simultaneous cleavage at two opposing sites at the junction. Branch mobility is not required for reaction chemistry at a junction, because topoisomerase cleaves a single CCCTT site in a non-mobile four-way junction where the scissile phosphate is at the crossover point. The junction resolvase activity of topo-isomerase may be involved in forming the hairpin telomeres of the vaccinia genome.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN/metabolismo , Virus Vaccinia/enzimología , Secuencia de Bases , Sitios de Unión , ADN/química , ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/farmacología , Relación Dosis-Respuesta a Droga , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica
14.
Nucleic Acids Res ; 27(20): 3953-63, 1999 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-10497258

RESUMEN

We report that the NAD-dependent Escherichia coli DNA ligase can support the growth of Saccharomyces cerevisiae strains deleted singly for CDC9 or doubly for CDC9 plus LIG4. Alanine-scanning mutagenesis of E.coli DNA ligase led to the identification of seven amino acids (Lys115, Asp117, Asp285, Lys314, Cys408, Cys411 and Cys432) that are essential for nick-joining in vitro and for in vivo complementation in yeast. The K314A mutation uniquely resulted in accumulation of the DNA-adenylate intermediate. Alanine substitutions at five other positions (Glu113, Tyr225, Gln318, Glu319 and Cys426) did not affect in vivo complementation and had either no effect or only a modest effect on nick-joining in vitro. The E113A and Y225A mutations increased the apparent K (m)for NAD (to 45 and 76 microM, respectively) over that of the wild-type E. coli ligase (3 microM). These results are discussed in light of available structural data on the adenylylation domains of ATP- and NAD-dependent ligases. We observed that yeast cells containing only the 298-amino acid Chlorella virus DNA ligase (a 'minimal' eukaryotic ATP-dependent ligase consisting only of the catalytic core domain) are relatively proficient in the repair of DNA damage induced by UV irradiation or treatment with MMS, whereas cells containing only E.coli ligase are defective in DNA repair. This suggests that the structural domains unique to yeast Cdc9p are not essential for mitotic growth, but may facilitate DNA repair.


Asunto(s)
ADN Ligasas/fisiología , Análisis Mutacional de ADN , Ligasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas Virales , Alanina/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia Conservada , Cisteína/genética , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/metabolismo , Reparación del ADN , Escherichia coli/enzimología , Escherichia coli/genética , Prueba de Complementación Genética , Ligasas/genética , Metilmetanosulfonato/farmacología , Datos de Secuencia Molecular , Mutágenos/farmacología , Relación Estructura-Actividad , Rayos Ultravioleta
15.
Nucleic Acids Res ; 27(24): 4671-8, 1999 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-10572165

RESUMEN

Saccharomyces cerevisiae RNA triphosphatase (Cet1p) and RNA guanylyltransferase (Ceg1p) interact in vivo and in vitro to form a bifunctional mRNA capping enzyme complex. Cet1p binding to Ceg1p stimulates the guanylyltransferase activity of Ceg1p. Here we localize the guanylyltransferase-binding and guanylyltransferase-stimulation functions of Cet1p to a 21-amino acid segment from residues 239 to 259. The guanylyltransferase-binding domain is located on the protein surface, as gauged by protease sensitivity, and is conserved in the Candida albicans RNA triphosphatase CaCet1p. Alanine-cluster mutations of a WAQKW motif within this segment abolish guanylyltransferase-binding in vitro and Cet1p function in vivo, but do not affect the triphosphatase activity of Cet1p. Proteolytic footprinting experiments provide physical evidence that Cet1p interacts with the C-terminal domain of Ceg1p. Trypsin-sensitive sites of Ceg1p that are shielded from proteolysis when Ceg1p is bound to Cet1p are located between nucleotidyl transferase motifs V and VI.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Nucleotidiltransferasas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Ácido Anhídrido Hidrolasas/genética , Alanina , Secuencia de Aminoácidos , Candida albicans/enzimología , Candida albicans/genética , Cromatografía de Afinidad , Secuencia Conservada , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína/química , Señales de Clasificación de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
16.
Nucleic Acids Res ; 29(2): 387-96, 2001 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11139608

RESUMEN

RNA triphosphatase catalyzes the first step in mRNA cap formation which entails the cleavage of the beta-gamma phosphoanhydride bond of triphosphate-terminated RNA to yield a diphosphate end that is then capped with GMP by RNA guanylyltransferase. Here we characterize a 303 amino acid RNA triphosphatase (Pct1p) encoded by the fission yeast SCHIZOSACCHAROMYCES: pombe. Pct1p hydrolyzes the gamma phosphate of triphosphate-terminated poly(A) in the presence of magnesium. Pct1p also hydrolyzes ATP to ADP and P(i) in the presence of manganese or cobalt (K(m) = 19 microM ATP; k(cat) = 67 s(-1)). Hydrolysis of 1 mM ATP is inhibited with increasing potency by inorganic phosphate (I(0.5) = 1 mM), pyrophosphate (I(0.5) = 0.4 mM) and tripolyphosphate (I(0.5) = 30 microM). Velocity sedimentation indicates that Pct1p is a homodimer. Pct1p is biochemically and structurally similar to the catalytic domain of Saccharomyces cerevisiae RNA triphosphatase Cet1p. Mechanistic conservation between Pct1p and Cet1p is underscored by a mutational analysis of the putative metal-binding site of Pct1p. Pct1p is functional in vivo in S.cerevisiae in lieu of Cet1p, provided that it is coexpressed with the S.pombe guanylyltransferase. Pct1p and other yeast RNA triphosphatases are completely unrelated, mechanistically and structurally, to the metazoan RNA triphosphatases, suggesting an abrupt evolutionary divergence of the capping apparatus during the transition from fungal to metazoan species.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Schizosaccharomyces/enzimología , Ácido Anhídrido Hidrolasas/antagonistas & inhibidores , Ácido Anhídrido Hidrolasas/genética , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Fusión Artificial Génica , Difosfatos/farmacología , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Hidrólisis , Cinética , Metales/química , Ratones , Datos de Secuencia Molecular , Nucleotidiltransferasas/genética , Fosfatos/farmacología , Monoéster Fosfórico Hidrolasas/metabolismo , Polifosfatos/farmacología , Caperuzas de ARN/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido
17.
Nucleic Acids Res ; 28(9): 1885-92, 2000 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-10756187

RESUMEN

The RNA triphosphatase component (CaCet1p) of the mRNA capping apparatus of the pathogenic fungus Candida albicans differs mechanistically and structurally from the RNA triphosphatase of mammals. Hence, CaCet1p is an attractive antifungal target. Here we identify a C-terminal catalytic domain of CaCet1p from residue 257 to 520 and characterize a manganese-dependent and cobalt-dependent NTPase activity intrinsic to CaCet1p. The NTPase can be exploited to screen in vitro for inhibitors. The amino acids that comprise the active site of CaCet1p were identified by alanine-scanning mutagenesis, which was guided by the crystal structure of the homologous RNA triphosphatase from Saccharomyces cerevisiae (Cet1p). Thirteen residues required for the phosphohydrolase activity of CaCet1p (Glu287, Glu289, Asp363, Arg379, Lys396, Glu420, Arg441, Lys443, Arg445, Asp458, Glu472, Glu474 and Glu476) are located within the hydrophilic interior of an eight-strand beta barrel of Cet1p. Each of the eight strands contributes at least one essential amino acid. The essential CaCet1p residues include all of the side chains that coordinate manganese and sulfate (i.e., gamma phosphate) in the Cet1p product complex. These results suggest that the active site structure and catalytic mechanism are conserved among fungal RNA triphosphatases.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Candida albicans/genética , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Candida albicans/enzimología , Cobalto/farmacología , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica , Hidrólisis , Cinética , Manganeso/farmacología , Datos de Secuencia Molecular , Mutación , Fosfatos/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
18.
Nucleic Acids Res ; 28(17): 3323-31, 2000 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10954601

RESUMEN

DNA topoisomerases and DNA site-specific recombinases are involved in a diverse set of cellular processes but both function by making transient breaks in DNA. Type IB topoisomerases and tyrosine recombinases cleave DNA by transesterification of an active site tyrosine to generate a DNA-3'-phosphotyrosyl-enzyme adduct and a free 5'-hydroxyl (5'-OH). Strand ligation results when the 5'-OH attacks the covalent complex and displaces the enzyme. We describe the synthesis of 3'-phospho-(para-nitrophenyl) oligonucleotides (3'-pNP DNAs), which mimic the natural 3'-phosphotyrosyl intermediate, and demonstrate that such pre-activated strands are substrates for DNA ligation by vaccinia topoisomerase and Cre recombinase. Ligation occurs by direct attack of a 5'-OH strand on the 3'-pNP DNA (i.e., without a covalent protein-DNA intermediate) and generates free para-nitrophenol as a product. The chromogenic DNA substrate allows ligation to be studied in real-time and in the absence of competing cleavage reactions and can be exploited for high-throughput screening of topoisomerase/recombinase inhibitors.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN/química , ADN/metabolismo , Integrasas/metabolismo , Nitrofenoles/metabolismo , Compuestos Organofosforados/metabolismo , Virus Vaccinia/enzimología , Proteínas Virales , Arginina/genética , Arginina/metabolismo , Secuencia de Bases , Sitios de Unión , Catálisis , ADN/síntesis química , ADN/genética , ADN-Topoisomerasas de Tipo I/aislamiento & purificación , Ésteres/metabolismo , Integrasas/aislamiento & purificación , Imitación Molecular , Nitrofenoles/química , Oligodesoxirribonucleótidos/síntesis química , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/genética , Oligodesoxirribonucleótidos/metabolismo , Compuestos Organofosforados/química , Especificidad por Sustrato , Tirosina/genética , Tirosina/metabolismo
19.
Nucleic Acids Res ; 28(11): 2221-8, 2000 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10871342

RESUMEN

We report the production, purification and characterization of a DNA ligase encoded by the thermophilic archaeon Methanobacterium thermoautotrophicum. The 561 amino acid MTH: ligase catalyzed strand-joining on a singly nicked DNA in the presence of a divalent cation (magnesium, manganese or cobalt) and ATP (K(m) 1.1 microM). dATP can substitute for ATP, but CTP, GTP, UTP and NAD(+) cannot. MTH: ligase activity is thermophilic in vitro, with optimal nick-joining at 60 degrees C. Mutational analysis of the conserved active site motif I (KxDG) illuminated essential roles for Lys251 and Asp253 at different steps of the ligation reaction. Mutant K251A is unable to form the covalent ligase-adenylate intermediate (step 1) and hence cannot seal a 3'-OH/5'-PO(4) nick. Yet, K251A catalyzes phosphodiester bond formation at a pre-adenylated nick (step 3). Mutant D253A is active in ligase-adenylate formation, but defective in activating the nick via formation of the DNA-adenylate intermediate (step 2). D253A is also impaired in phosphodiester bond formation at a pre-adenylated nick. A profound step 3 arrest, with accumulation of high levels of DNA-adenylate, could be elicited for the wild-type MTH: ligase by inclusion of calcium as the divalent cation cofactor. MTH: ligase sediments as a monomer in a glycerol gradient. Structure probing by limited proteolysis suggested that MTH: ligase is a tightly folded protein punctuated by a surface-accessible loop between nucleotidyl transferase motifs III and IIIa.


Asunto(s)
Proteínas Arqueales/química , ADN Ligasas/química , Methanobacterium/enzimología , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Sitios de Unión , Cationes Bivalentes/farmacología , Centrifugación por Gradiente de Densidad , ADN Ligasas/genética , Endopeptidasas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Mutación , Pliegue de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sales (Química)/farmacología , Especificidad por Sustrato , Temperatura
20.
Structure ; 4(6): 653-6, 1996 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-8805556

RESUMEN

The crystal structure of T7 DNA ligase complexed with ATP illuminates the mechanism of covalent catalysis by a superfamily of nucleotidyl transferases that includes the ATP-dependent polynucleotide ligases and the GTP-dependent mRNA capping enzymes.


Asunto(s)
ADN Ligasas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada/genética , Cristalografía por Rayos X , ADN Ligasa (ATP) , Modelos Moleculares , Datos de Secuencia Molecular , Nucleotidiltransferasas/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA