Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Yi Chuan ; 46(7): 530-539, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39016086

RESUMEN

Accurate breed classification is required for the conservation and utilization of farm animal genetic resources. Traditional classification methods mainly rely on phenotypic characterization. However, it is difficult to distinguish between the highly similar breeds due to the challenges in qualifying the phenotypic character. Machine learning algorithms show unique advantages in breed classification using genomic information. To evaluate the classification methods for Chinese cattle breeds, this study utilized genomic SNP data from 213 individuals across seven Chinese local breeds and compared the classification accuracies of three feature selection methods (FST value sorting and screening, mRMR, and Relief-F) and three machine learning algorithms (Random Forest, Support Vector Machine, and Naive Bayes). Results showed that: 1) using the FST method to screen more than 1500 SNPs, or using the mRMR algorithm to screen more than 1000 SNPs, the SVM classification algorithm can achieve more than 99.47% classification accuracy; 2) the most effective algorithm was SVM, followed by NB, while the best SNP selection method was FST and mRMR, followed by Relief-F; 3) species misclassification often occurs between breeds with high similarity. This study demonstrates that machine learning classification models combined with genomic data are effective methods for the classification of local cattle breeds, providing a technical basis for the rapid and accurate classification of cattle breeds in China.


Asunto(s)
Algoritmos , Aprendizaje Automático , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , China , Cruzamiento , Genómica/métodos , Máquina de Vectores de Soporte , Marcadores Genéticos/genética , Genoma/genética
2.
Mol Biol Evol ; 37(9): 2616-2629, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32384152

RESUMEN

Genetic introgression not only provides material for adaptive evolution but also confounds our understanding of evolutionary history. This is particularly true for canids, a species complex in which genome sequencing and analysis has revealed a complex history of admixture and introgression. Here, we sequence 19 new whole genomes from high-altitude Tibetan and Himalayan wolves and dogs and combine these into a larger data set of 166 whole canid genomes. Using these data, we explore the evolutionary history and adaptation of these and other canid lineages. We find that Tibetan and Himalayan wolves are closely related to each other, and that ∼39% of their nuclear genome is derived from an as-yet-unrecognized wolf-like lineage that is deeply diverged from living Holarctic wolves and dogs. The EPAS1 haplotype, which is present at high frequencies in Tibetan dog breeds and wolves and confers an adaptive advantage to animals living at high altitudes, was probably derived from this ancient lineage. Our study underscores the complexity of canid evolution and demonstrates how admixture and introgression can shape the evolutionary trajectories of species.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Evolución Biológica , Perros/genética , Hibridación Genética , Lobos/genética , Animales , Secuenciación Completa del Genoma
3.
Cell Res ; 30(8): 693-701, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32581344

RESUMEN

Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.


Asunto(s)
Pollos/genética , Genoma , Filogenia , Distribución Animal , Animales , Animales Domésticos/genética , Asia , Domesticación , Pool de Genes , Geografía , Funciones de Verosimilitud , Aves de Corral/genética , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA