Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biomacromolecules ; 24(11): 5290-5302, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831506

RESUMEN

Proteinaceous amyloid fibrils are one of the stiffest biopolymers due to their extensive cross-ß-sheet quaternary structure, whereas cellulose nanofibrils (CNFs) exhibit interesting properties associated with their nanoscale size, morphology, large surface area, and biodegradability. Herein, CNFs were supplemented with amyloid fibrils assembled from the Curli-specific gene A (CsgA) protein, the main component of bacterial biofilms. The resulting composites showed superior mechanical properties, up to a 7-fold increase compared to unmodified CNF films. Wettability and thermogravimetric analyses demonstrated high surface hydrophobicity and robust thermal tolerance. Bulk spectroscopic characterization of CNF-CsgA films revealed key insights into the molecular organization within the bionanocomposites. Atomic force microscopy and photoinduced force microscopy revealed the high-resolution location of curli assemblies into the CNF films. This novel sustainable and cost-effective CNF-based bionanocomposites supplemented with intertwined bacterial amyloid fibrils opens novel directions for environmentally friendly applications demanding high mechanical, water-repelling properties, and thermal resistance.


Asunto(s)
Celulosa , Nanofibras , Celulosa/química , Amiloide/química , Biopolímeros/química , Proteínas Amiloidogénicas , Microscopía de Fuerza Atómica , Nanofibras/química
2.
Molecules ; 28(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38138595

RESUMEN

Mesalamine, also called 5-ASA (5-aminosalicylic acid), is a largely used anti-inflammatory agent and is a main choice to treat Ulcerative Colitis. This report is aimed to investigate enzymatic processes involved in the oxidation of mesalamine to better understand some of its side-effects. Oxidation with oxygen (catalyzed by ceruloplasmin) or with hydrogen peroxide (catalyzed by peroxidase or hemoglobin) showed that these oxidases, despite their different mechanisms of oxidation, could recognize mesalamine as a substrate and trigger its oxidation to a corresponding quinone-imine. These enzymes were chosen because they may recognize hydroquinone (a p-diphenol) as substrate and oxidize it to p-benzoquinone and that mesalamine, as a p-aminophenol, presents some similarities with hydroquinone. The UV-Vis kinetics, FTIR and 1H NMR supported the hypothesis of oxidizing mesalamine. Furthermore, mass spectrometry suggested the quinone-imine as reaction product. Without enzymes, the oxidation process was very slow (days and weeks), but it was markedly accelerated with the oxidases, particularly with peroxidase. Cyclic voltammetry supported the hypothesis of the oxidative process and allowed a ranking of susceptibility to oxidizing mesalamine in comparison with other oxidizable drug molecules with related structures. The susceptibility to oxidation was higher for mesalamine, in comparison with Tylenol (acetaminophen) and with aspirin (salicylic acid).


Asunto(s)
Colitis Ulcerosa , Mesalamina , Humanos , Mesalamina/química , Monofenol Monooxigenasa , Hidroquinonas , Antiinflamatorios no Esteroideos/química , Peroxidasa , Colitis Ulcerosa/tratamiento farmacológico , Oxidación-Reducción , Peroxidasas , Quinonas/uso terapéutico , Catálisis , Iminas
3.
Chemistry ; 22(17): 5849-52, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-26953926

RESUMEN

Graphene oxide is regarded as a major precursor for graphene-based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels-Alder cycloaddition. The Diels-Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high-resolution (13) C-SS NMR spectra, we show evidence for the formation of new sp(3) carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies.

4.
Analyst ; 141(9): 2733-40, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-26883409

RESUMEN

The accurate quantification of the level of p53 antibodies in serum is crucial for cancer prognosis. We report a novel and sensitive label-free immunosensor based on gold nanoparticles (Au NPs) self-assembled onto electrochemically reduced graphene oxide (ERGO) for the detection of p53 antibodies. An electrografted p-aminophenol organic layer was used to immobilize graphene oxide (GO) onto the surface of screen printed carbon electrodes (SPCE). The Au NP/ERGO hybrid interface provides a large surface area for the effective immobilization of p53 antigens, as well as it ascertains the bioactivity and stability of immobilized p53 antigens. Scanning electron microscope, Raman and X-ray photoelectron spectroscopies were used to monitor the sensor fabrication and cyclic voltammetry was used to quantify the extent of Au NPs' surface coverage by p53 antigens. Square wave voltammetry (SWV) of a [Fe(CN)6](3-/4-) couple was employed to investigate the immunosensor fabrication and to monitor the binding events between p53 antigens and p53 antibodies. Under optimized experimental conditions, the biosensor displayed good sensitivity and specificity. The p53 antibodies were detected in a concentration as low as 0.088 pg mL(-1) with a linear range from 0.1 pg mL(-1) to 10 ng mL(-1). The high sensitivity of the immunosensor may derive from the high loading of p53 antibodies on Au NPs which increases the number of binding events.


Asunto(s)
Anticuerpos Antineoplásicos/sangre , Oro/química , Grafito/química , Nanopartículas del Metal/química , Neoplasias/sangre , Proteína p53 Supresora de Tumor/sangre , Técnicas Electroquímicas/métodos , Humanos , Neoplasias/diagnóstico , Pronóstico
5.
Nano Lett ; 15(4): 2263-8, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25730309

RESUMEN

Hexagonal boron nitride (hBN) is a wide-gap material that has attracted significant attention as an ideal dielectric substrate for 2D crystal heterostructures. We report here the first observation of in-plane charge transport in large-area monolayer hBN, grown by chemical vapor deposition. The quadratic scaling of current with voltage at high bias corresponds to a space-charge limited conduction mechanism, with a room-temperature mobility reaching up to 0.01 cm(2)/(V s) at electric fields up to 100 kV/cm in the absence of dielectric breakdown. The observation of in-plane charge transport highlights the semiconducting nature of monolayer hBN, and identifies hBN as a wide-gap 2D crystal capable of supporting charge transport at high field. Future exploration of charge transport in hBN is motivated by the fundamental study of UV optoelectronics and the massive Dirac fermion spectrum of hBN.

6.
Anal Chem ; 87(2): 1075-82, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25486123

RESUMEN

Rising progesterone (P4) levels in humans due to its overconsumption through hormonal therapy, food products, or drinking water can lead to many negative health effects. Thus, the simple and accurate assessment of P4 in both environmental and clinical samples is highly important to protect public health. In this work, we present the selection, identification, and characterization of ssDNA aptamers with high binding affinity to P4. The aptamers were selected in vitro from a single-stranded DNA library of 1.8 × 10(15) oligonucleotides showing dissociation constants (KD) in the low nanomolar range. The dissociation constant of the best aptamer, designated as P4G13, was estimated to be 17 nM by electrochemical impedance spectroscopy (EIS) as well as fluorometric assay. Moreover, the aptamer P4G13 did not show cross-reactivity to analogues similar to progesterone such as 17ß-estradiol (E2) and norethisterone (NET). An impedimetric aptasensor for progesterone was then fabricated based on the conformational change of P4G13 aptamer, immobilized on the gold electrode by self-assembly, upon binding to P4, which results in an increase in electron transfer resistance. Aptamer-complementary DNA (cDNA) oligonucleotides were tested to maximize the signal gain of the aptasensor after binding with progesterone. Significant signal enhancement was observed when the aptamer hybridized with a short complementary sequence at specific site was used instead of pure aptamer. This signal gain is likely due to the more significant conformational change of the aptamer-cDNA than the pure aptamer upon binding with P4, as confirmed by circular dichroism (CD) spectroscopy. The developed aptasensor exhibited a linear range for concentrations of P4 from 10 to 60 ng/mL with a detection limit of 0.90 ng/mL. Moreover, the aptasensor was applied in spiked tap water samples and showed good recovery percentages. The new selected progesterone aptamers can be exploited in further biosensing applications for environmental, clinical, and medical diagnostic purposes.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , ADN de Cadena Simple/química , Espectroscopía Dieléctrica/métodos , Estradiol/análisis , Progesterona/análisis , Aptámeros de Nucleótidos/metabolismo , Cartilla de ADN/química , ADN de Cadena Simple/metabolismo , Electrodos , Estradiol/metabolismo , Humanos , Límite de Detección , Progesterona/metabolismo
7.
Anal Chem ; 86(18): 9196-203, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25122072

RESUMEN

Contamination of freshwater with cyanotoxin cylindrospermopsin (CYN) represents a significant global concern for public health. The sensitive detection of CYN is necessary to effectively manage and control the treatment of water resources. Here we report a novel, highly sensitive label-free aptasensor for CYN analysis, using aptamers as specific receptors. We have selected the DNA aptamers from a diverse random library using the in vitro screening SELEX approach. The aptamers exhibited high affinity for CYN with Kd of nanomolar range. One aptamer exhibited conformational change upon CYN recognition (CD analysis) and was used to fabricate the label-free impedimetric aptasensor for CYN. A self-assembled monolayer from a disulfide-derivatized aptamer was formed on a gold electrode to fabricate the aptasensor. Upon CYN capturing to the aptasensor surface, a marked drop in the electron transfer resistance was obtained, which was used as the principle of detection of CYN. This resulted from the aptamer's conformational change induced by CYN recognition. The present aptasensor could detect CYN with the limit of detection as low as 100 pM and a wide linear range of 0.1 to 80 nM. When mounted on the gold surface, the aptamer exhibited a lower dissociation constant for CYN than that observed in the fluorescence assay, implying that the anchoring of the aptamer on the Au surface improved its affinity to CYN. Moreover, the aptasensor showed high specificity toward other coexistent cyanobacterial toxins of microcystin-LR and Anatoxin-a. Further biosensor designs will be generated using those aptamers for simple and sensitive CYN monitoring.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Técnicas Biosensibles , Uracilo/análogos & derivados , Alcaloides , Aptámeros de Nucleótidos/química , Toxinas Bacterianas , Dicroismo Circular , Toxinas de Cianobacterias , Técnicas Electroquímicas , Transporte de Electrón , Oro/química , Uracilo/análisis , Uracilo/metabolismo
8.
Anal Chem ; 86(15): 7551-7, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25011536

RESUMEN

The development of successful biosensing platforms is highly dependent upon the biorecognition properties of the recognition receptor and the sensitivity of the transducer of the binding signal. The integration of the high affinity and specificity of DNA aptamers with the unique properties of the carbon nanomaterial graphene offers an excellent avenue for sensitive and selective biosensing architectures. In this work, a highly sensitive and selective aptasensor which utilizes an unlabeled DNA aptamer assembled on a graphene electrode for microcystin-LR detection was developed. A facile strategy was used for the aptasensor fabrication on the basis of the noncovalent assembly of DNA aptamer on graphene-modified screen printed carbon electrodes. Assembly of the DNA aptamer on the graphene-modified electrodes caused a marked drop in the square wave voltammetric reduction signal of the [Fe(CN)6](4-/3-) redox couple. The presence of microcystin-LR, on the other hand, caused a dose-responsive increase in peak current, allowing the quantification of microcystin-LR through the measurement of peak current change. Under optimal conditions, the detection limit of the developed aptasensor was 1.9 pM in buffer, a concentration much lower than those offered by previously reported biosensors for microcystin-LR. The developed aptasensor also exhibited excellent selectivity for microcystin-LR with no detectable cross-reactivity to okadaic acid, microcystin-LA, and microcystin-YR. Moreover, the proposed aptasensor has been applied for the analysis of spiked tap water and fish samples showing good recovery percentages. This novel, simple, high-performance, and low-cost detection platform would facilitate the routine monitoring of microcystin-LR in real samples.


Asunto(s)
Aptámeros de Nucleótidos/química , Electrodos , Grafito/química , Microcistinas/análisis , Animales , Secuencia de Bases , Cartilla de ADN , Peces , Límite de Detección , Toxinas Marinas , Contaminantes Químicos del Agua/análisis
9.
Small Methods ; : e2400753, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149783

RESUMEN

The wood preservative disodium octaborate tetrahydrate (DOT) migration is studied in clay. Using boron analysis by inductively coupled plasma optical emission spectroscopy (ICP-OES), DOT spatial and temporal dynamics are surveyed to show how DOT permeates into the wood and the clay using concentration profiles as a function of depth, initial wood moisture, and direction of filling. Atomic force microscopy and chemical imaging using photoinduced force microscopy are used to show the morphology of the wood samples and the distribution of DOT on their surface. ICP-OES results show that the average DOT concentration in the wood samples is originally 0.8 and 1.5 wt% in the bulk and at the surface, respectively. Conditioning of the wood to a moisture content of 19% in a climatic chamber reduces DOT concentration by 8% for the fir and 17% for the spruce. After one week of contact with the clays, the results showed a rapid decrease of 25-40% in DOT concentration in wood. On longer periods (5 months), the spruce shows a tendency to reabsorb the DOT from the clay and the DOT migration stabilizes at 20%. These results contribute to defining the dosage of DOT when the wood is exposed to clay.

10.
RSC Adv ; 14(33): 23921-23929, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39086520

RESUMEN

A highly stable flow-injection amperometric sensor for dexamethasone (DEX) was developed using a pencil graphite electrode (PGE) modified with Fe-based metal organic frameworks, MIL-100(Fe) and graphene oxide composite materials (MIL-100(Fe)/GO). Scanning electron microscopy and energy-dispersive X-ray spectroscopy, transmission electron microscopy, powder X-ray diffraction, and Fourier-transform infrared spectroscopy were used to characterize the MIL-100(Fe) composites. The MIL-100(Fe)/GO-modified PGE (denoted MIL-100(Fe)/GO/PGE) was further electrochemically characterized using cyclic voltammetry. As an electrode material, MIL-100(Fe) is a sensing element that undergoes oxidation from Fe(ii)-MOF to Fe(iii)-MOF, and GO possesses high conductivity and a large surface area, which exhibits high absorbability. In the presence of DEX, Fe(iii) is reduced, which accelerates electron transfer at the electrode interface. Therefore, DEX can be quantitatively detected by analyzing the anodic current of MIL-100(Fe). When coupled with amperometric flow injection analysis, excellent performance can be obtained even when a low detection potential is applied (+0.10 V vs. Ag/AgCl). The concentration was linear in the range 0.10-5.0 µM and 0.010-5.0 mM with LOD of 0.030 µM based on 3(sd/slope). The modified electrode also exhibited a remarkably stable response under optimized conditions, and up to 55 injections can be used per electrode. The sensor exhibits high repeatability, reproducibility, and anti-interference properties when used for DEX detection. The effective determination of dexamethasone in real pharmaceutical and cosmetic samples demonstrated the feasibility of the electrochemical sensor, and the results were in good agreement with those obtained from the HPLC-DAD analysis. Acceptable percentage recoveries from the spiked pharmaceutical and cosmetic samples were obtained, ranging from 93-111% for this new method compared with 84-107% for the HPLC-DAD standard method.

11.
J Pharm Biomed Anal ; 242: 116034, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422671

RESUMEN

T-cells play a significant role in the development of autoimmune diseases. The CD28-B7 costimulatory pathway is crucial for activating T-cells, and blocking this pathway is essential for treating autoimmune diseases. Therapeutic antibodies and fusion proteins that target costimulatory molecules like CD80, CD86, CTLA-4, and CD28 have been developed to explore the costimulation process and as targeted treatments. To advance our understanding of costimulation in autoimmunity and the inhibition of the costimulatory pathway, it is crucial to have an accurate, precise, and direct method for detecting and quantifying the soluble form of these molecules in body fluids and various biological systems. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying the four costimulatory proteins depending on the signature peptides derived from the soluble isoform of these proteins in multiple reaction monitoring (MRM) mode. The method was validated using the US FDA guidelines. The LOQ was determined as ∼0.5 nM for the four analytes, with quantification extended to 20 nM with a correlation coefficient of R2>0.998. The developed MRM method was used to analyze on-bead digested protein mixtures to establish a competitive assay for the CD28-B7 costimulatory pathway using CTLA4-Ig (Abatacept ™) as an FDA-approved drug for rheumatoid arthritis. The IC50 was determined to be 2.99 and 159.8 nM for sCD80 and sCD86, respectively. A straightforward MRM-based competitive assay will advance the knowledge about the costimulatory role in autoimmunity and the autoimmune therapeutic drug discovery, with the need for broad application on different in vitro and in vivo models to discover new targeted inhibitors.


Asunto(s)
Enfermedades Autoinmunes , Inmunoconjugados , Humanos , Antígenos CD28/metabolismo , Antígenos CD/metabolismo , Antígeno B7-2 , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Antígeno B7-1/metabolismo , Abatacept
12.
RSC Adv ; 14(21): 14616-14623, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38708120

RESUMEN

In this study, a one-pot synthesis of a molybdenum diselenide/nitrogen-doped graphene oxide (MoSe2/NGO) composite was demonstrated and used for the fabrication of an electrochemical pH sensor. The MoSe2/NGO composite was characterized using powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analysis. The electrochemical behavior at different pH values was determined by recording the open-circuit potential. When applied for pH detection, the MoSe2/NGO modified screen-printed electrode (SPE) showed good linearity with a sensitivity of 61.3 mV pH-1 over a wide pH range of 2-14. In addition, the pH sensor exhibited a remarkably stable response, high reproducibility, and selectivity. The sensor was used to measure the acidity or alkalinity of real food and beverage samples. The results for these samples showed a relative error of less than 10% compared with the results obtained with the commercial pH meter. The portable sensor produced by screen printing electrodes paves the way for the development of simple, cost-effective, real-time, and robust pH sensors for the pH analysis of various sample matrices for clinical diagnostics, biosensing, and cost-effective applications.

13.
ACS Appl Mater Interfaces ; 16(39): 51837-51859, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39163539

RESUMEN

Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.g., hypoxia, acidic pH, high levels of glutathione, and overexpressed hydrogen peroxide) or extrinsic stimulus of laser light bring about more precise and selective treatments. Among them, nanostructures of covalent organic frameworks (COFs) have drawn great interest in biomedical fields during recent years. Possessing large surface area, high porosity, structural stability, and customizable architecture, these biocompatible porous crystalline polymers properly translate to promising platforms for drug delivery and induction of combination therapies. With the focus on stimuli-responsive characteristics of nanoscale COFs, this study aims to propose an overview of their potentiality in cancer treatment on the basis of chemotherapy alone or in combination with sonodynamic, chemodynamic, photodynamic, and photothermal therapies.


Asunto(s)
Antineoplásicos , Estructuras Metalorgánicas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Portadores de Fármacos/química , Nanopartículas/química , Nanopartículas/uso terapéutico , Animales , Microambiente Tumoral/efectos de los fármacos
14.
Dalton Trans ; 53(23): 9874-9886, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38805202

RESUMEN

Two new heteroleptic indium aminothiolate compounds [InClSC2H4N(Me)SC2H4]3[1] and [InSC2H4N(Me)SC2H4(C8H5F3NO)] [2] were synthesized by in situ salt metathesis reaction involving indium trichloride, aminothiol, and N,O-ß-heteroarylalkenol ligands. The complexes were subsequently purified and thoroughly characterized by nuclear magnetic resonance (NMR) analysis, elemental studies, mass spectroscopy, and X-ray diffraction single crystal analysis that showed a trigonal bipyramidal coordination of In(III) in both complexes. Thermogravimetric analysis of [1] revealed a multistep decomposition pathway and the formation of In2S3 at 350 °C, which differed from the pattern of [2] due to the lower thermal stability of [1]. Compound [2] exhibited a three-step decomposition process, resulting in the formation of In2S3 at 300 °C. The Chemical Vapor Deposition (CVD) experiment involving compound [2] was conducted on the FTO substrate, resulting in the production of singular-phase In2S3 deposits. A comprehensive characterization of these deposits, including crystal structure analysis via X-ray diffraction (XRD), and surface topography examination through scanning electron microscopy (SEM) has been completed. The presence of In-S units was also supported by the Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS) of the as-deposited films. Moreover, the electronic structure and thermal properties of compound [2] were investigated through DFT calculations. Electron density localization analysis revealed that the highest occupied molecular orbital (HOMO) exhibited dense concentration at the aminothiolate moiety of the complex, while the lowest unoccupied molecular orbital (LUMO) predominantly resided at the N,O-ß-heteroarylalkenolate ligand. Furthermore, our computational investigation has validated the formation of indium sulfide by elucidating an intermediate state, effectively identified through EI-MS analysis, as one of the plausible pathways for obtaining In2S3. This intermediate state comprises the aminothiolate ligand (LNS) coordinated with indium metal.

15.
Polymers (Basel) ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732680

RESUMEN

Cellulose is a biopolymer with numerous advantages that make it an ecological, economical, and high-performing choice for various applications. To fully exploit the potential of cellulose, it is often necessary to dissolve it, which poses a current challenge. The aqueous zinc oxide/sodium hydroxide (ZnO/NaOH/Water) system is a preferred solvent for its rapid dissolution, non-toxicity, low cost, and environmentally friendly nature. In this context, the behavior of cellulose chains in the aqueous solution of ZnO/NaOH and the impact of temperature on the solubility of this polymer were examined through a molecular dynamics simulation. The analysis of the root means square deviation (RMSD), interaction energy, hydrogen bond curves, and radial distribution function revealed that cellulose is insoluble in the ZnO/NaOH solvent at room temperature (T = 298 K). Decreasing the temperature in the range of 273 K to 268 K led to a geometric deformation of cellulose chains, accompanied by a decrease in the number of interchain hydrogen bonds over the simulation time, thus confirming the solubility of cellulose in this system between T = 273 K and T = 268 K.

16.
Anal Chem ; 85(24): 11794-801, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24164310

RESUMEN

This work describes the selection and identification of DNA aptamers that bind with high affinity and specificity to okadaic acid (OA), a lipophilic marine biotoxin that accumulates in shellfish. The aptamers selected using systematic evolution of ligands by exponential enrichment (SELEX) exhibited dissociation constants in the nanomolar range. The aptamer with the highest affinity was then used for the fabrication of a label-free electrochemical biosensor for okadaic acid detection. The aptamer was first immobilized on the gold electrode by a self-assembly approach through Au-S interaction. The binding of okadaic acid to the aptamer immobilized on the electrode surface induces an alteration of the aptamer conformation causing a significant decrease in the electron-transfer resistance monitored by electrochemical impedance spectroscopy. The aptasensor showed a linear range for the concentrations of OA between 100 pg/mL and 60 ng/mL with a detection limit of 70 pg/mL. The dissociation constant of okadaic acid with the aptamer immobilized on the electrode surface showed good agreement with that determined using fluorescence assay in solution. Moreover, the aptasensor did not show cross-reactivity toward toxins with structures similar to okadaic acid such as dinophysis toxin-1 and 2 (DTX-1, DTX-2). Further biosensing applications of the selected aptamers are expected to offer promising alternatives to the traditional analytical and immunological methods for OA detection.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Técnicas Biosensibles/métodos , Ácido Ocadaico/análisis , Aptámeros de Nucleótidos/genética , Secuencia de Bases , Ácido Ocadaico/metabolismo
17.
Analyst ; 138(15): 4378-84, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23736898

RESUMEN

A graphene-based label-free voltammetric immunosensor for the sensitive detection of the egg white allergen ovalbumin has been developed. Graphene-modified screen printed carbon electrodes have been covalently functionalized using electrochemical reduction of in situ generated aryl diazonium salt forming a carboxyphenyl film on the graphene surface. The blocking property of the carboxyphenyl film grafted on to the graphene electrodes using different cyclic voltammetry cycles has been characterized using differential pulse voltammetry in [Fe(CN)6](3-/4-) solution. Then, the terminal carboxylic groups on the graphene surface were activated using EDC/NHS and used to immobilize the ovalbumin antibody and construct the immunosensor. The fabrication steps of the immunosensor have also been characterized using differential pulse voltammetry. The decrease in the [Fe(CN)6](3-/4-) reduction peak current after the immunochemical reaction with ovalbumin has been used for the ovalbumin detection. The developed immunosensor has been used for ovalbumin detection in the concentration range of 1 pg mL(-1) to 0.5 µg mL(-1) with a detection limit of 0.83 pg mL(-1) in PBS buffer. The food matrix effect studied with ovalbumin spiked cake extract showed a good percentage of recovery, indicating the possible applicability of the developed immunosensor in real food samples.


Asunto(s)
Alérgenos/análisis , Técnicas Electroquímicas/métodos , Grafito/química , Ovalbúmina/análisis , Animales , Bovinos , Pollos , Límite de Detección , Albúmina Sérica Bovina/análisis
18.
ACS Omega ; 8(10): 9137-9144, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936297

RESUMEN

Highly cross-linked inorganic and organic hybrid cyclomatrix-polyphosphazenes microspheres (C-PPZs) have been successfully synthesized by a one-pot polymerization technique between hexachlorocyclotriphosphazene and p-phenylenediamine in the presence of triethylamine (TEA), and they were used for enhancing the flame retardancy of epoxy resins (EPs). A thermoset EP was prepared by incorporating different percentages (2, 5, and 10%) of C-PPZs into diglycidyl ether of bisphenol A (DGEBA). The results reveal that the size and morphology of the microspheres can be tuned by varying the synthesis temperature. The average size of C-CPPZs gradually increased from 3.1, 4.9, to 7.8 µm as the temperature was increased from 100, 120, to 200 °C, respectively. The thermogravimetric analysis showed that the C-CPPZ microspheres have good thermal stability up to 900 °C with about ∼10 wt % mass loss for C-CPPZs formed at 200 °C compared to ∼30 wt % mass loss for those obtained at 100 and 120 °C. The 10% loss at 900 °C is much lower than the previous research concerning the thermal stability of cyclophosphazene, in which more weight losses were observed at lower temperatures. The resulting C-CPPZ microspheres were characterized by spectroscopic and imaging techniques including Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, elemental mapping, and X-ray photoelectron spectroscopy.

19.
Biosens Bioelectron ; 242: 115696, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37816286

RESUMEN

Elevating soluble CD80 (sCD80) in human serum is a natural response to autoimmune diseases such as rheumatoid arthritis (RA). The level of sCD80 is associated with RA development and prognosis; therefore, it is potentially used as a biomarker. sCD80 is commonly measured in human serum using immunoassays (e.g., ELISA) with multiple drawbacks, mainly cross-reactivity. Aptamer-based biosensors (aptasensors) development for quantifying and detecting different biological molecules demonstrates applicability in next-generation medicine and biomarker detection. Herein, we selected a specific aptamer for sCD80 by conventional in-vitro selection process (SELEX) with the high-affinity aptamer (Kd = 47.69 nM). A sensitive aptasensor, for the first time, was developed on a screen-printed gold electrode (AuSPE) platform compatible with easy-to-use label-free electrochemical impedance spectroscopy. The immobilization of the aptamer on the gold surface and the presence of sCD80 in a complex with the aptamer were characterized by photo-induced force microscopy, which revealed the uniform assembly of the aptamer monolayer and the distribution of sCD80 on the electrode surface. The developed aptasensor showed a linear performance (0.025-10.0 nM of protein) with a detection limit of 8.0 pM. Furthermore, the aptasensor was tested in a biological matrix, where a linear signal was observed for the increased amount of spiked sCD80 (R2 = 0.9887). The recovery of the spiked amounts ranged from 105 to 125% with coefficient of variation (CV%) <7%, which supported the applicability of this sensor in detecting sCD80 for diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Humanos , Técnicas Biosensibles/métodos , Límite de Detección , Técnicas Electroquímicas/métodos , Aptámeros de Nucleótidos/química , Moléculas de Adhesión Celular , Oro/química , Biomarcadores , Electrodos
20.
Clin Chim Acta ; 548: 117501, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37516334

RESUMEN

BACKGROUND AND AIMS: Rheumatoid arthritis (RA) is a chronic autoimmune disease. RA-induced immunological responses are coordinated by T-cell stimulation. The costimulatory signal CD28-B7 is essential for T-cell activation by interacting CD28 with CD80 and CD86 costimulatory proteins. CTLA4 is another costimulatory protein that binds to CD80 and CD86 to inhibit T-cell activity. The soluble costimulatory proteins: sCD80, sCD86, sCD28, and sCTLA-4 were detected and quantified in human plasma and correlated with RA development. As potential diagnostic biomarkers for RA, developing a sensitive, specific, and reproducible method for quantifying these costimulatory molecules in human plasma and establishing quantitative ranges for each protein in healthy and RA patients' plasma is essential for advancing the clinical diagnostic and health outcomes. MATERIALS AND METHODS: A novel quantitative liquid chromatography-tandem spectrometry (LC-MS/MS) technique using multiple reaction monitoring (MRM) modes was developed and validated to measure soluble costimulatory molecules sCTLA4, sCD28, sCD80, and sCD86 in human plasma samples. Furthermore, the method was applied to determine sCTLA4, sCD28, sCD80, and sCD86 levels in plasma samples from RA patients (n = 23) and healthy controls (n = 21). RESULTS: The method was successfully developed and validated according to international inter- and intra-assay precision and accuracy guidelines. The linearity of the method was achieved between 0.5 nM and 100 nM for each protein with a correlation coefficient of > 0.998. The plasma level of sCTLA4, sCD80, and sCD86 in RA patients was significantly elevated compared to controls. RA patients had 63.32 ± 17.63 nM sCTLA4 and controls 36.05 ± 18.83 nM; p < 0.0001. The performance of the four proteins was determined using ROC curves, where sCTLA4 showed the highest diagnostic and clinical performance compared to the others. CONCLUSIONS: This study reports the first use of LC-MS/MS in MRM mode to accurately quantify soluble costimulatory molecules in plasma samples as potential RA diagnostic biomarkers. Determination of the reference range for each protein with high selectivity and sensitivity increases the potential for utilizing this method as a clinical diagnostic.


Asunto(s)
Artritis Reumatoide , Antígenos CD28 , Humanos , Antígenos CD , Antígeno B7-2 , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antígeno B7-1/metabolismo , Factores de Transcripción , Artritis Reumatoide/diagnóstico , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA