Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Med Biol ; 68(18)2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37619588

RESUMEN

Objective. To develop real-time 4D MRI using MR signature matching (MRSIGMA) for volumetric motion imaging in patients with pancreatic cancer on a 1.5T MR-Linac system.Approach. Two consecutive MRI scans with 3D golden-angle radial stack-of-stars acquisitions were performed on ten patients with inoperable pancreatic cancer. The complete first scan (905 angles) was used to compute a 4D motion dictionary including ten pairs of 3D motion images and signatures. The second scan was used for real-time imaging, where each angle (275 ms) was processed separately to match it to one of the dictionary entries. The complete second scan was also used to compute a 4D reference to assess motion tracking performance.Dicecoefficients of the gross tumor volume (GTV) and two organs-at-risk (duodenum-stomach and small bowel) were calculated between signature matching and reference. In addition, volume changes, displacements, center of mass shifts, andDicescores over time were calculated to characterize motion.Main results. Total imaging latency of MRSIGMA (acquisition + matching) was less than 300 ms. TheDicecoefficients were 0.87 ± 0.06 (GTV), 0.86 ± 0.05 (duodenum-stomach), and 0.85 ± 0.05 (small bowel), which indicate high accuracy (high mean value) and low uncertainty (low standard deviation) of MRSIGMA for real-time motion tracking. The center of mass shift was 3.1 ± 2.0 mm (GTV), 5.3 ± 3.0 mm (duodenum-stomach), and 3.4 ± 1.5 mm (small bowel). TheDicescores over time (0.97 ± [0.01-0.03]) were similarly high for MRSIGMA and reference scans in all the three contours.Significance. This work demonstrates the feasibility of real-time 4D MRI using MRSIGMA for volumetric motion tracking on a 1.5T MR-Linac system. The high accuracy and low uncertainty of real-time MRSIGMA is an essential step towards continuous treatment adaptation of tumors affected by real-time respiratory motion and could ultimately improve treatment safety by optimizing ablative dose delivery near gastrointestinal organs.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Movimiento (Física) , Órganos en Riesgo , Neoplasias Pancreáticas
2.
Sci Rep ; 12(1): 15010, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056131

RESUMEN

Flexible radiofrequency coils for magnetic resonance imaging (MRI) have garnered attention in research and industrial communities because they provide improved accessibility and performance and can accommodate a range of anatomic postures. Most recent flexible coil developments involve customized conductors or substrate materials and/or target applications at 3 T or above. In contrast, we set out to design a flexible coil based on an off-the-shelf conductor that is suitable for operation at 0.55 T (23.55 MHz). Signal-to-noise ratio (SNR) degradation can occur in such an environment because the resistance of the coil conductor can be significant with respect to the sample. We found that resonating a commercially available RG-223 coaxial cable shield with a lumped capacitor while the inner conductor remained electrically floating gave rise to a highly effective "cable coil." A 10-cm diameter cable coil was flexible enough to wrap around the knee, an application that can benefit from flexible coils, and had similar conductor loss and SNR as a standard-of-reference rigid copper coil. A two-channel cable coil array also provided good SNR robustness against geometric variability, outperforming a two-channel coaxial coil array by 26 and 16% when the elements were overlapped by 20-40% or gapped by 30-50%, respectively. A 6-channel cable coil array was constructed for 0.55 T knee imaging. Incidental cartilage and bone pathologies were clearly delineated in T1- and T2-weighted turbo spin echo images acquired in 3-4 min with the proposed coil, suggesting that clinical quality knee imaging is feasible in an acceptable examination timeframe. Correcting for T1, the SNR measured with the cable coil was approximately threefold lower than that measured with a 1.5 T state-of-the-art 18-channel coil, which is expected given the threefold difference in main magnetic field strength. This result suggests that the 0.55 T cable coil conductor loss does not deleteriously impact SNR, which might be anticipated at low field.


Asunto(s)
Articulación de la Rodilla , Imagen por Resonancia Magnética , Diseño de Equipo , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Ondas de Radio , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA