Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Neurosci ; 23(6): 361-375, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35444305

RESUMEN

Mapping human brain function is a long-standing goal of neuroscience that promises to inform the development of new treatments for brain disorders. Early maps of human brain function were based on locations of brain damage or brain stimulation that caused a functional change. Over time, this approach was largely replaced by technologies such as functional neuroimaging, which identify brain regions in which activity is correlated with behaviours or symptoms. Despite their advantages, these technologies reveal correlations, not causation. This creates challenges for interpreting the data generated from these tools and using them to develop treatments for brain disorders. A return to causal mapping of human brain function based on brain lesions and brain stimulation is underway. New approaches can combine these causal sources of information with modern neuroimaging and electrophysiology techniques to gain new insights into the functions of specific brain areas. In this Review, we provide a definition of causality for translational research, propose a continuum along which to assess the relative strength of causal information from human brain mapping studies and discuss recent advances in causal brain mapping and their relevance for developing treatments.


Asunto(s)
Encefalopatías , Neurociencias , Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Neuroimagen/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38763835

RESUMEN

OBJECTIVE: Anxiety disorders and subsyndromal anxiety symptoms are highly prevalent in late life. Recent studies support that anxiety may be a neuropsychiatric symptom during preclinical Alzheimer's disease (AD) and that higher anxiety is associated with more rapid cognitive decline and progression to cognitive impairment. However, the associations of specific anxiety symptoms with AD pathologies and with co-occurring subjective and objective cognitive changes have not yet been established. METHODS: Baseline data from the A4 and Longitudinal Evaluation of Amyloid Risk and Neurodegeneration studies were analyzed. Older adult participants (n = 4,486) underwent assessments of anxiety (State-Trait Anxiety Inventory-6 item version [STAI]), and cerebral amyloid-beta (Aß; 18F-florbetapir) PET and a subset underwent tau (18F-flortaucipir) PET. Linear regressions estimated associations of Aß in a cortical composite and tau in the amygdala, entorhinal, and inferior temporal regions with STAI-Total and individual STAI item scores. Models adjusted for age, sex, education, marital status, depression, Apolipoprotein ε4 genotype, and subjective and objective cognition (Cognitive Function Index-participant; Preclinical Alzheimer Cognitive Composite). RESULTS: Greater Aß deposition was significantly associated with higher STAI-Worry, adjusting for all covariates, but not with other STAI items or STAI-Total scores. In mediation analyses, the association of Aß with STAI-Worry was partially mediated by subjective cognition with a stronger direct effect. No associations were found for regional tau deposition with STAI-Total or STAI-Worry score. CONCLUSION: Greater worry was associated with Aß but not tau deposition, independent of subjective and objective cognition in cognitively unimpaired (CU) older adults. These findings implicate worry as an early, specific behavioral marker and a possible therapeutic target in preclinical AD.

3.
Semin Neurol ; 42(2): 88-106, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35477181

RESUMEN

Neuropsychiatry is a clinical neuroscience specialty focused on the evaluation and treatment of patients who present with symptoms at the intersection of neurology and psychiatry. Neuropsychiatrists assess and manage the cognitive, affective, behavioral, and perceptual manifestations of disorders of the central nervous system. Although fellowship training in behavioral neurology-neuropsychiatry exists in the United States and several other countries internationally, the need for neuropsychiatric expertise greatly outweighs the number of specialists in practice or training. This article serves as a primer for both neurologists and psychiatrists seeking to improve or refresh their knowledge of the neuropsychiatric assessment, including detailing aspects of the history-taking, physical exam, psychometric testing, and associated diagnostic work-up. In doing so, we urge the next generation of neurologists and psychiatrists to take on both the opportunity and challenge to work at the intersection of both clinical neuroscience specialties using an integrated neuropsychiatric perspective.


Asunto(s)
Trastornos Mentales , Neurología , Neuropsiquiatría , Neurociencias , Psiquiatría , Humanos , Trastornos Mentales/diagnóstico , Trastornos Mentales/terapia , Neurología/educación , Neuropsiquiatría/educación , Neurociencias/educación , Psiquiatría/educación , Estados Unidos
4.
Curr Neurol Neurosci Rep ; 22(3): 171-181, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35175543

RESUMEN

PURPOSE OF REVIEW: Mild traumatic brain injury (mTBI) can result in prolonged post-concussive symptoms (e.g., depression, headaches, cognitive impairment) that are debilitating and difficult to treat. This article reviews recent research on neuromodulation for mTBI. RECENT FINDINGS: Transcranial magnetic stimulation (TMS) is the most studied neuromodulation approach for mTBI (four studies for depression, four for headache, one for cognitive impairment, and two for global post-concussive symptoms) with promising results for post-concussive depression and headache. Transcranial direct current stimulation (tDCS) has also been evaluated (one study for post-traumatic headache, and three for cognitive impairment), with more mixed results overall. TMS appears to be a potentially promising neuromodulation treatment strategy for post-concussive symptoms; however, integration into clinical practice will require larger sham-controlled randomized trials with longer and more consistent follow-up periods. Future studies should also explore new stimulation protocols, personalized approaches, and the role of placebo effects.


Asunto(s)
Conmoción Encefálica , Síndrome Posconmocional , Estimulación Transcraneal de Corriente Directa , Conmoción Encefálica/complicaciones , Conmoción Encefálica/terapia , Cefalea/terapia , Humanos , Síndrome Posconmocional/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Resultado del Tratamiento
5.
J Head Trauma Rehabil ; 35(6): 388-400, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33165152

RESUMEN

BACKGROUND: Since the year 2000, over 342 000 military service members have experienced a concussion, often associated with chronic neuropsychiatric and neurocognitive symptoms. Repetitive transcranial magnetic stimulation (rTMS) protocols have been developed for many of these symptoms in the general population. OBJECTIVE: To conduct a scoping review of the literature on rTMS for neuropsychological and neurocognitive symptoms following concussion. METHODS: PubMed and Google Scholar search engines identified 9 articles, written in English, corresponding to the search terms TBI or concussion; and TMS or rTMS; and depression, PTSD, or cognition. Studies that were not therapeutic trials or case reports, did not have neuropsychiatric or neurocognitive primary outcome measures, or described samples where 80% or more of the cohort did not have a TBI were excluded. RESULTS: There were no reports of seizures nor difference in the frequency or quality of other adverse events as compared with the broader rTMS literature, supporting the safety of rTMS in this population. Support for the efficacy of rTMS for the treatment of neuropsychiatric and neurocognitive symptoms, in this population, is limited. CONCLUSIONS: Large-scale, innovative, neuroscience-informed protocols are recommended to elucidate the potential utility of rTMS for the complex neuropsychiatric and neurocognitive symptoms associated with military concussions.


Asunto(s)
Conmoción Encefálica , Personal Militar , Estimulación Magnética Transcraneal , Conmoción Encefálica/complicaciones , Conmoción Encefálica/terapia , Cognición , Depresión/etiología , Humanos , Convulsiones , Trastornos por Estrés Postraumático/etiología
6.
J Head Trauma Rehabil ; 35(6): 401-411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33165153

RESUMEN

Optimizing transcranial magnetic stimulation (TMS) treatments in traumatic brain injury (TBI) and co-occurring conditions may benefit from neuroimaging-based customization. PARTICIPANTS: Our total sample (N = 97) included 58 individuals with TBI (49 mild, 8 moderate, and 1 severe in a state of disordered consciousness), of which 24 had co-occurring conditions (depression in 14 and alcohol use disorder in 10). Of those without TBI, 6 individuals had alcohol use disorder and 33 were healthy controls. Of our total sample, 54 were veterans and 43 were civilians. DESIGN: Proof-of-concept study incorporating data from 5 analyses/studies that used multimodal approaches to integrate neuroimaging with TMS. MAIN MEASURES: Multimodal neuroimaging methods including structural magnetic resonance imaging (MRI), MRI-guided TMS navigation, functional MRI, diffusion MRI, and TMS-induced electric fields. Outcomes included symptom scales, neuropsychological tests, and physiological measures. RESULTS: It is feasible to use multimodal neuroimaging data to customize TMS targets and understand brain-based changes in targeted networks among people with TBI. CONCLUSIONS: TBI is an anatomically heterogeneous disorder. Preliminary evidence from the 5 studies suggests that using multimodal neuroimaging approaches to customize TMS treatment is feasible. To test whether this will lead to increased clinical efficacy, studies that integrate neuroimaging and TMS targeting data with outcomes are needed.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Estimulación Magnética Transcraneal , Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/terapia , Humanos , Imagen por Resonancia Magnética , Neuroimagen
8.
J Neuropsychiatry Clin Neurosci ; 31(3): 254-263, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30945588

RESUMEN

OBJECTIVE: The recent advent of individualized resting-state network mapping (RSNM) has revealed substantial interindividual variability in anatomical localization of brain networks identified by using resting-state functional MRI (rsfMRI). RSNM enables personalized targeting of focal neuromodulation techniques such as repetitive transcranial magnetic stimulation (rTMS). rTMS is believed to exert antidepressant efficacy by modulating connectivity between the stimulation site, the default mode network (DMN), and the subgenual anterior cingulate cortex (sgACC). Personalized rTMS may be particularly useful after repetitive traumatic brain injury (TBI), which is associated with neurodegenerative tauopathy in medial temporal limbic structures. These degenerative changes are believed to be related to treatment-resistant neurobehavioral disturbances observed in many retired athletes. METHODS: The authors describe a case in which RSNM was successfully used to target rTMS to treat these neuropsychiatric disturbances in a retired NFL defensive lineman whose symptoms were not responsive to conventional treatments. RSNM was used to identify left-right dorsolateral prefrontal rTMS targets with maximal difference between dorsal attention network and DMN correlations. These targets were spatially distinct from those identified by prior methods. Twenty sessions of left-sided excitatory and right-sided inhibitory rTMS were administered at these targets. RESULTS: Treatment led to improvement in Montgomery-Åsberg Depression Rating Scale (72%), cognitive testing, and headache scales scores. Compared with healthy individuals and subjects with TBI-associated depression, baseline rsfMRI revealed substantially elevated DMN connectivity with the medial temporal lobe (MTL). Serial rsfMRI scans revealed gradual improvement in MTL-DMN connectivity and stimulation site connectivity with sgACC. CONCLUSIONS: These results highlight the possibility of individualized neuromodulation and biomarker-based monitoring for neuropsychiatric sequelae of repetitive TBI.


Asunto(s)
Atletas/psicología , Lesiones Traumáticas del Encéfalo/terapia , Conectoma , Depresión/terapia , Estimulación Magnética Transcraneal/métodos , Adulto , Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/fisiopatología , Depresión/complicaciones , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiopatología , Corteza Prefrontal/fisiología
9.
J ECT ; 35(1): 3-5, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29877963

RESUMEN

Clinical trials using left-sided repetitive transcranial magnetic stimulation (rTMS) report remission rates of 14% to 32.6%. A large percentage of patients would not achieve remission with standard rTMS treatment. The question of what clinicians should do when a patient is not responding to standard high-frequency (HF) left-sided rTMS remains unanswered. This prospective case series examines whether crossover to bilateral stimulation enhances antidepressant outcomes in patients not responding to unilateral rTMS. Patients in a major depressive episode received an rTMS clinical protocol of 4 to 6 weeks' duration. Stimulation began with HF rTMS (10 Hz) over the left dorsolateral prefrontal cortex (range, 3000-5000 pulses per session). A total of 17 patients without sufficient clinical improvement early in their rTMS course received 1-Hz rTMS (range, 600-1200 pps) over the right dorsolateral prefrontal cortex (added to the HF left-sided stimulation). Hamilton Depression Rating Scale scores decreased from 13.9 ± 3.9 (mean ± SD) from the start of augmentation to 12.2 ± 5.8 at the end of acute treatment, a 1.7-point change, Cohen d effect size = -0.35, 95% confidence interval, -1.01 to - 0.34, suggesting improvement. Remission rate in this sample was 24% (4/17). This case series indicates that crossover to bilateral stimulation is a feasible and potentially effective strategy when patients are not improving with standard rTMS. A randomized controlled trial comparing crossover versus standard rTMS is needed to determine the efficacy of this paradigm.


Asunto(s)
Trastorno Depresivo Mayor/terapia , Estimulación Magnética Transcraneal/métodos , Adulto , Anciano , Trastorno Depresivo Mayor/psicología , Trastorno Depresivo Resistente al Tratamiento/terapia , Femenino , Lateralidad Funcional , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Escalas de Valoración Psiquiátrica , Resultado del Tratamiento
10.
Biol Psychiatry ; 95(6): 502-509, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37979642

RESUMEN

Increasing evidence suggests that the clinical effects of transcranial magnetic stimulation are target dependent. Within any given symptom, precise targeting of specific brain circuits may improve clinical outcomes. This principle can also be extended across symptoms-stimulation of different circuits may lead to different symptom-level outcomes. This may include targeting different symptoms within the same disorder (such as dysphoria vs. anxiety in patients with major depression) or targeting the same symptom across different disorders (such as primary major depression and depression secondary to stroke, traumatic brain injury, epilepsy, multiple sclerosis, or Parkinson's disease). Some of these symptom-specific changes may be desirable, while others may be undesirable. This review focuses on the conceptual framework through which symptom-specific target circuits may be identified, tested, and implemented.


Asunto(s)
Trastorno Depresivo Mayor , Enfermedad de Parkinson , Humanos , Estimulación Magnética Transcraneal , Trastornos de Ansiedad , Ansiedad
11.
J Affect Disord ; 351: 66-73, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244806

RESUMEN

BACKGROUND: TMS is increasingly used to treat depression, but predictors of treatment outcomes remain unclear. We assessed the association between age and TMS response given inconsistent prior reports limited by small sample size, heterogeneity, outdated TMS parameters, lack of assessment of H1-coil TMS, and lack of an a priori hypothesis. We hypothesized that older age would be associated with better treatment response based on trends in recent large exploratory analyses. METHODS: We conducted a naturalistic retrospective analysis of patients (n = 378) ages 18-80 with depression (baseline Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) > 5) who received 29-35 sessions of TMS between 2014 and 2021. Response was assessed using percent reduction of QIDS-SR. The relationship between percent response or remission and age group was assessed using the chi-square test. RESULTS: 85 % of patients received the standard protocol of H1-coil TMS to the left DLPFC. Percent response and remission rates for the entire study sample increased with age (response: p = .026; remission: p = .0023). This finding was stronger in female patients (response: p = .0033; remission: p = .00098) and was not observed in male patients (response: p = .73; remission: p = .26). This was confirmed in a sub-analysis of patients who only received the standard protocol with the H1-coil for the entire treatment course. LIMITATIONS: Naturalistic retrospective analysis from one academic center. CONCLUSIONS: Older age is associated with a better antidepressant response to H1-coil TMS in female patients. This was demonstrated in a hypothesis-driven confirmation of prior exploratory findings in a large sample size with a homogeneous data collection protocol across all participants.


Asunto(s)
Antidepresivos , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Anciano , Estimulación Magnética Transcraneal/métodos , Estudios Retrospectivos , Resultado del Tratamiento , Antidepresivos/uso terapéutico , Tamaño de la Muestra
12.
Neuropsychopharmacology ; 49(1): 179-188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37524752

RESUMEN

The principle of targeting brain circuits has drawn increasing attention with the growth of brain stimulation treatments such as transcranial magnetic stimulation (TMS), deep brain stimulation (DBS), and focused ultrasound (FUS). Each of these techniques can effectively treat different neuropsychiatric disorders, but treating any given disorder depends on choosing the right treatment target. Here, we propose a three-phase framework for identifying and modulating these targets. There are multiple approaches to identifying a target, including correlative neuroimaging, retrospective optimization based on existing stimulation sites, and lesion localization. These techniques can then be optimized using personalized neuroimaging, physiological monitoring, and engagement of a specific brain state using pharmacological or psychological interventions. Finally, a specific stimulation modality or combination of modalities can be chosen after considering the advantages and tradeoffs of each. While there is preliminary literature to support different components of this framework, there are still many unanswered questions. This presents an opportunity for the future growth of research and clinical care in brain circuit therapeutics.


Asunto(s)
Encéfalo , Estimulación Encefálica Profunda , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Estimulación Magnética Transcraneal/métodos , Neuroimagen/métodos , Estimulación Encefálica Profunda/métodos
13.
Artículo en Inglés | MEDLINE | ID: mdl-38844713

RESUMEN

Transcranial magnetic stimulation (TMS) is entering increasingly widespread use in treating depression. The most common stimulation target, in the dorsolateral prefrontal cortex (DLPFC), emerged from early neuroimaging studies in depression. Recently, more rigorous casual methods have revealed whole-brain target networks and anti-networks based on the effects of focal brain lesions and focal brain stimulation on depression symptoms. Symptom improvement during therapeutic DLPFC-TMS appears to involve directional changes in signaling between the DLPFC, subgenual and dorsal anterior cingulate cortex, and salience-network regions. However, different networks may be involved in the therapeutic mechanisms for other TMS targets in depression, such as dorsomedial prefrontal cortex or orbitofrontal cortex. The durability of therapeutic effects for TMS involves synaptic neuroplasticity, and specifically may depend upon dopamine acting at the D1 receptor family, as well as NMDA-receptor-dependent synaptic plasticity mechanisms. Although TMS protocols are classically considered 'excitatory' or 'inhibitory', the actual effects in individuals appear quite variable, and might be better understood at the level of populations of synapses rather than individual synapses. Synaptic meta-plasticity may provide a built-in protective mechanism to avoid runaway facilitation or inhibition during treatment, and may account for the relatively small number of patients who worsen rather than improve with TMS. From an ethological perspective, the antidepressant effects of TMS may involve promoting a whole-brain attractor state associated with foraging/hunting behaviors, centered on the rostrolateral periaqueductal gray and salience network, and suppressing an attractor state associated with passive threat defense, centered on the ventrolateral periaqueductal gray and default-mode network.

14.
Cortex ; 172: 109-113, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38271817

RESUMEN

The Vietnam Head Injury Study has been curated by Dr Jordan Grafman since the 1980s in an effort to study patients with penetrating traumatic brain injuries suffered during the Vietnam War. Unlike many datasets of ischemic stroke lesions, the VHIS collected extraordinarily deep phenotyping and was able to sample lesion locations that are not constrained to typical vascular territories. For decades, this dataset has helped researchers draw causal links between neuroanatomical regions and neuropsychiatric symptoms. The value of the VHIS has only increased over time as techniques for analyzing the dataset have developed and evolved. Tools such as voxel lesion symptom mapping allowed one to relate symptoms to individual brain voxels. With the advent of the human connectome, tools such as lesion network mapping allow one to relate symptoms to connected brain networks by combining lesion datasets with new atlases of human brain connectivity. In a series of recent studies, lesion network mapping has been combined with the Vietnam Head Injury dataset to identify brain networks associated with spirituality, religiosity, consciousness, memory, emotion regulation, addiction, depression, and even transdiagnostic mental illness. These findings are enhancing our ability to make diagnoses, identify potential treatment targets for focal brain stimulation, and understand the human brain generally. Our techniques for studying brain lesions will continue to improve, as will our tools for modulating brain circuits. As these advances occur, the value of well characterized lesion datasets such as the Vietnam Head Injury Study will continue to grow. This study aims to review the history of the Vietnam Head Injury Study and contextualize its role in modern-day localization of neurological symptoms.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Conectoma , Humanos , Vietnam , Encéfalo/patología , Conectoma/métodos
15.
Biol Psychiatry ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909668

RESUMEN

Extinction of traumatic memory, a primary treatment approach (termed exposure therapy) in post-traumatic stress disorder (PTSD), occurs through relearning and may be subserved at the molecular level by long-term potentiation (LTP) of relevant circuits. In parallel, repetitive transcranial magnetic stimulation (rTMS) is thought to work through LTP-like mechanisms and may provide a novel, safe, and effective treatment for PTSD. Our recent failed randomized controlled trial (1) emphasizes the necessity of correctly identifying cortical targets, directionality of TMS protocol, and role of memory activation. Here we provide a systematic review of TMS for PTSD to further identify how, where, and when TMS treatment should be delivered to alleviate PTSD symptoms. We conducted a systematic review of the literature searching for rTMS clinical trials involving PTSD patients and outcomes. We searched MEDLINE through October 25th, 2023 for "TMS and PTSD" and "transcranial magnetic stimulation and posttraumatic stress disorder." Thirty-one publications met our inclusion criteria (k=17 randomized controlled trials (RCTs), k=14 open label). RCT protocols were varied in TMS protocols, cortical TMS targets, and memory activation protocols. There was no clear superiority across protocols of low-frequency (k=5) vs. high-frequency protocols (k=6), or by stimulation location. Memory provocation or exposure protocols (k=7) appear to enhance response. Overall, TMS appears to be effective in treating PTSD symptoms across a variety of TMS frequencies, hemispheric target differences, and exposure protocols. Disparate protocols may be conceptually harmonized when viewed as potentiating proposed anxiolytic networks or suppressing anxiogenic networks.

16.
Am J Psychiatry ; 181(2): 100-114, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38018143

RESUMEN

Noninvasive brain stimulation technologies such as transcranial electrical and magnetic stimulation (tES and TMS) are emerging neuromodulation therapies that are being used to target the neural substrates of substance use disorders. By the end of 2022, 205 trials of tES or TMS in the treatment of substance use disorders had been published, with heterogeneous results, and there is still no consensus on the optimal target brain region. Recent work may help clarify where and how to apply stimulation, owing to expanding databases of neuroimaging studies, new systematic reviews, and improved methods for causal brain mapping. Whereas most previous clinical trials targeted the dorsolateral prefrontal cortex, accumulating data highlight the frontopolar cortex as a promising therapeutic target for transcranial brain stimulation in substance use disorders. This approach is supported by converging multimodal evidence, including lesion-based maps, functional MRI-based maps, tES studies, TMS studies, and dose-response relationships. This review highlights the importance of targeting the frontopolar area and tailoring the treatment according to interindividual variations in brain state and trait and electric field distribution patterns. This converging evidence supports the potential for treatment optimization through context, target, dose, and timing dimensions to improve clinical outcomes of transcranial brain stimulation in people with substance use disorders in future clinical trials.


Asunto(s)
Conducta Adictiva , Trastornos Relacionados con Sustancias , Humanos , Estimulación Magnética Transcraneal/métodos , Encéfalo , Trastornos Relacionados con Sustancias/terapia , Corteza Prefrontal
17.
Artículo en Inglés | MEDLINE | ID: mdl-38729243

RESUMEN

Transcranial magnetic stimulation (TMS) is used to treat several neuropsychiatric disorders including depression, where it is effective in approximately half of patients for whom pharmacological approaches have failed. Treatment response is related to stimulation parameters such as the stimulation frequency, pattern, intensity, location, total number of pulses and sessions applied, as well as target brain network engagement. One critical but underexplored component of the stimulation procedure is the orientation or yaw angle of the commonly used figure-of-eight TMS coil, which is known to impact neuronal response to TMS. However, coil orientation has remained largely unchanged since TMS was first used to treat depression and continues to be based on motor cortex anatomy which may not be optimal for the dorsolateral prefrontal cortex treatment site. This targeted narrative review evaluates experimental, clinical, and computational evidence indicating that optimizing coil orientation may potentially improve TMS treatment outcomes. The properties of the electric field induced by TMS, the changes to this field caused by the differing conductivities of head tissues, and the interaction between coil orientation and the underlying cortical anatomy are summarized. We describe evidence that the magnitude and site of cortical activation, surrogate markers of TMS dosing and brain network targeting considered central in clinical response to TMS, are influenced by coil orientation. We suggest that coil orientation should be considered when applying therapeutic TMS and propose several approaches to optimizing this potentially important treatment parameter.

18.
Res Sq ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38659844

RESUMEN

Transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS) can treat some neuropsychiatric disorders, but there is no consensus approach for identifying new targets. We localized causal circuit-based targets for anxiety that converged across multiple natural experiments. Lesions (n=451) and TMS sites (n=111) that modify anxiety mapped to a common normative brain circuit (r=0.68, p=0.01). In an independent dataset (n=300), individualized TMS site connectivity to this circuit predicted anxiety change (p=0.02). Subthalamic DBS sites overlapping the circuit caused more anxiety (n=74, p=0.006), thus demonstrating a network-level effect, as the circuit was derived without any subthalamic sites. The circuit was specific to trait versus state anxiety in datasets that measured both (p=0.003). Broadly, this illustrates a pathway for discovering novel circuit-based targets across neuropsychiatric disorders.

19.
Biol Psychiatry ; 96(2): 101-113, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38141909

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS: Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS: DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS: Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.


Asunto(s)
Estimulación Encefálica Profunda , Cápsula Interna , Trastorno Obsesivo Compulsivo , Humanos , Trastorno Obsesivo Compulsivo/terapia , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Cápsula Interna/diagnóstico por imagen , Estriado Ventral/diagnóstico por imagen , Estriado Ventral/fisiopatología , Resultado del Tratamiento , Adulto Joven
20.
Sci Transl Med ; 15(703): eabn0441, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37406139

RESUMEN

Depression associated with traumatic brain injury (TBI) is believed to be clinically distinct from primary major depressive disorder (MDD) and may be less responsive to conventional treatments. Brain connectivity differences between the dorsal attention network (DAN), default mode network (DMN), and subgenual cingulate have been implicated in TBI and MDD. To characterize these distinctions, we applied precision functional mapping of brain network connectivity to resting-state functional magnetic resonance imaging data from five published patient cohorts, four discovery cohorts (n = 93), and one replication cohort (n = 180). We identified a distinct brain connectivity profile in TBI-associated depression that was independent of TBI, MDD, posttraumatic stress disorder (PTSD), depression severity, and cohort. TBI-associated depression was independently associated with decreased DAN-subgenual cingulate connectivity, increased DAN-DMN connectivity, and the combined effect of both. This effect was stronger when using precision functional mapping relative to group-level network maps. Our results support the possibility of a physiologically distinct "TBI affective syndrome," which may benefit from individualized neuromodulation approaches to target its distinct neural circuitry.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/complicaciones , Mapeo Encefálico/métodos , Depresión/complicaciones , Depresión/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vías Nerviosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA