Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 70(3): 165-177, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37976469

RESUMEN

Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Enfermedad Pulmonar Obstructiva Crónica/genética , Diferenciación Celular , Metilación de ADN , Progresión de la Enfermedad , Epigénesis Genética , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas
2.
J Cell Sci ; 135(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35118497

RESUMEN

The airway epithelium is subjected to insults such as cigarette smoke (CS), a primary cause of chronic obstructive pulmonary disease (COPD) and serves as an excellent model to study cell plasticity. Here, we show that both CS-exposed and COPD-patient derived epithelia (CHBE) display quantitative evidence of cellular plasticity, with loss of specialized apical features and a transcriptional profile suggestive of partial epithelial-to-mesenchymal transition (pEMT), albeit with distinct cell motion indicative of cellular unjamming. These injured/diseased cells have an increased fraction of polymerized actin, due to loss of the actin-severing protein cofilin-1. We observed that decreasing polymerized actin restores the jammed state in both CHBE and CS-exposed epithelia, indicating that the fraction of polymerized actin is critical in unjamming the epithelia. Our kinetic energy spectral analysis suggests that loss of cofilin-1 results in unjamming, similar to that seen with both CS exposure and in CHBE cells. The findings suggest that in response to chronic injury, although epithelial cells display evidence of pEMT, their movement is more consistent with cellular unjamming. Inhibitors of actin polymerization rectify the unjamming features of the monolayer. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Actinas , Enfermedad Pulmonar Obstructiva Crónica , Actinas/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo/efectos adversos
3.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L467-L476, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37605829

RESUMEN

The airway epithelial barrier is crucial for defending against respiratory insults and diseases. Disruption of epithelial integrity contributes to respiratory diseases, and sex-specific differences in susceptibility and severity have been observed. However, sex-specific differences in the context of respiratory diseases are often overlooked, especially in murine models. In this study, we investigated the in vitro transcriptomics of male and female murine tracheal epithelial cells (mTECs) in response to chronic cigarette smoke (CS) exposure using an International Organization for Standardization (ISO) puff regimen. Our findings reveal sex-specific differences in the baseline characteristics of airway epithelial cells. Female mTECs demonstrated stronger barrier function and higher ciliary function compared with males. The barrier function was disrupted in both males and females following chronic CS, but the difference was more significant in females due to their higher baseline. Female mice exhibited transcriptional signatures suggesting dedifferentiation with increased basal cells and markers of cellular senescence. Pathway analysis indicated potential protective roles of planar cell polarity (PCP) in preventing dedifferentiation in male mice exposed to CS. We also observed sex-specific differences in the DNA damage response and antioxidant levels, suggesting distinct mechanisms underlying cellular stress. Understanding these sex-specific mechanisms could facilitate the development of targeted therapeutic strategies for lung diseases associated with environmental insults. Recognizing sex-based differences in disease susceptibility and treatment response can lead to personalized care and improved outcomes. Clinical trials should consider sex as a biological variable to develop effective interventions that address the unique differences between men and women in respiratory diseases.NEW & NOTEWORTHY The study underscores the importance of considering sex-specific differences in the airway epithelium in respiratory diseases such as COPD. Differences in gene expression between males and females at baseline and in response to chronic injury in the airway epithelium could have implications on disease susceptibility, both in COPD and other respiratory diseases. Therefore, understanding these differences is crucial for developing targeted therapies to treat respiratory diseases based on a sex-specific manner.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratones , Masculino , Animales , Femenino , Pulmón/metabolismo , Susceptibilidad a Enfermedades , Células Epiteliales/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
4.
J Cell Sci ; 134(4)2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33526710

RESUMEN

Airway hydration and ciliary function are critical to airway homeostasis and dysregulated in chronic obstructive pulmonary disease (COPD), which is impacted by cigarette smoking and has no therapeutic options. We utilized a high-copy cDNA library genetic selection approach in the amoeba Dictyostelium discoideum to identify genetic protectors to cigarette smoke. Members of the mitochondrial ADP/ATP transporter family adenine nucleotide translocase (ANT) are protective against cigarette smoke in Dictyostelium and human bronchial epithelial cells. Gene expression of ANT2 is reduced in lung tissue from COPD patients and in a mouse smoking model, and overexpression of ANT1 and ANT2 resulted in enhanced oxidative respiration and ATP flux. In addition to the presence of ANT proteins in the mitochondria, they reside at the plasma membrane in airway epithelial cells and regulate airway homeostasis. ANT2 overexpression stimulates airway surface hydration by ATP and maintains ciliary beating after exposure to cigarette smoke, both of which are key functions of the airway. Our study highlights a potential for upregulation of ANT proteins and/or of their agonists in the protection from dysfunctional mitochondrial metabolism, airway hydration and ciliary motility in COPD.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Dictyostelium , Enfermedad Pulmonar Obstructiva Crónica , Dictyostelium/genética , Células Epiteliales/metabolismo , Humanos , Pulmón , Mitocondrias , Translocasas Mitocondriales de ADP y ATP/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R109-R119, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36409022

RESUMEN

The fundamental body functions that determine maximal O2 uptake (V̇o2max) have not been studied in Aqp5-/- mice (aquaporin 5, AQP5). We measured V̇o2max to globally assess these functions and then investigated why it was found altered in Aqp5-/- mice. V̇o2max was measured by the Helox technique, which elicits maximal metabolic rate by intense cold exposure of the animals. We found V̇o2max reduced in Aqp5-/- mice by 20%-30% compared with wild-type (WT) mice. As AQP5 has been implicated to act as a membrane channel for respiratory gases, we studied whether this is caused by the known lack of AQP5 in the alveolar epithelial membranes of Aqp5-/- mice. Lung function parameters as well as arterial O2 saturation were normal and identical between Aqp5-/- and WT mice, indicating that AQP5 does not contribute to pulmonary O2 exchange. The cause for the decreased V̇o2max thus might be found in decreased O2 consumption of an intensely O2-consuming peripheral organ such as activated brown adipose tissue (BAT). We found indeed that absence of AQP5 greatly reduces the amount of interscapular BAT formed in response to 4 wk of cold exposure, from 63% in WT to 25% in Aqp5-/- animals. We conclude that lack of AQP5 does not affect pulmonary O2 exchange, but greatly inhibits transformation of white to brown adipose tissue. As under cold exposure, BAT is a major source of the animals' heat production, reduction of BAT likely causes the decrease in V̇o2max under this condition.


Asunto(s)
Tejido Adiposo Pardo , Intercambio Gaseoso Pulmonar , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Termogénesis/fisiología , Pulmón , Consumo de Oxígeno , Frío
6.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1072-L1088, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612064

RESUMEN

Human organ-on-a-chip models are powerful tools for preclinical research that can be used to study the mechanisms of disease and evaluate new targets for therapeutic intervention. Lung-on-a-chip models have been one of the most well-characterized designs in this field and can be altered to evaluate various types of respiratory disease and to assess treatment candidates prior to clinical testing. These systems are capable of overcoming the flaws of conventional two-dimensional (2-D) cell culture and in vivo animal testing due to their ability to accurately recapitulate the in vivo microenvironment of human tissue with tunable material properties, microfluidic integration, delivery of precise mechanical and biochemical cues, and designs with organ-specific architecture. In this review, we first describe an overview of currently available lung-on-a-chip designs. We then present how recent innovations in human stem cell biology, tissue engineering, and microfabrication can be used to create more predictive human lung-on-a-chip models for studying respiratory disease. Finally, we discuss the current challenges and future directions of lung-on-a-chip designs for in vitro disease modeling with a particular focus on immune and multiorgan interactions.


Asunto(s)
Células Epiteliales Alveolares/fisiología , Modelos Biológicos , Mucosa Respiratoria/fisiología , Enfermedades Respiratorias/fisiopatología , Células Epiteliales Alveolares/citología , Animales , Evaluación Preclínica de Medicamentos , Humanos , Dispositivos Laboratorio en un Chip , Mucosa Respiratoria/citología , Ingeniería de Tejidos
7.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L1-L11, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33174444

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by the destruction of alveolar tissue (in emphysema) and airway remodeling (leading to chronic bronchitis), which cause difficulties in breathing. It is a growing public health concern with few therapeutic options that can reverse disease progression or mortality. This is in part because current treatments mainly focus on ameliorating symptoms induced by inflammatory pathways as opposed to curing disease. Hence, emerging research focused on upstream pathways are likely to be beneficial in the development of efficient therapeutics to address the root causes of disease. Some of these pathways include mitochondrial function, cytoskeletal structure and maintenance, and airway hydration, which are all affected by toxins that contribute to COPD. Because of the complexity of COPD and unknown targets for disease onset, simpler model organisms have proved to be useful tools in identifying disease-relevant pathways and targets. This review summarizes COPD pathology, current treatments, and therapeutic discovery research, with a focus on the aforementioned pathways that can advance the therapeutic landscape of COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/terapia , Transducción de Señal , Animales , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L1056-L1062, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32233789

RESUMEN

Air-liquid interface (ALI) cultures are ex vivo models that are used extensively to study the epithelium of patients with chronic respiratory diseases. However, the in vitro conditions impose a milieu different from that encountered in the patient in vivo, and the degree to which this alters gene expression remains unclear. In this study we employed RNA sequencing to compare the transcriptome of fresh brushings of nasal epithelial cells with that of ALI-cultured epithelial cells from the same patients. We observed a strong correlation between cells cultured at the ALI and cells obtained from the brushed nasal epithelia: 96% of expressed genes showed similar expression profiles, although there was greater similarity between the brushed samples. We observed that while the ALI model provides an excellent representation of the in vivo airway epithelial transcriptome for mechanistic studies, several pathways are affected by the change in milieu.


Asunto(s)
Mucosa Nasal/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Mucosa Respiratoria/metabolismo , Transcriptoma , Anciano , Aire , Fumar Cigarrillos/efectos adversos , Medios de Cultivo/química , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Anotación de Secuencia Molecular , Mucosa Nasal/patología , Cultivo Primario de Células , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/patología , Análisis de Secuencia de ARN , Cornetes Nasales/metabolismo , Cornetes Nasales/patología
9.
Am J Physiol Gastrointest Liver Physiol ; 318(4): G705-G716, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32090604

RESUMEN

Anemia is a frequent diagnosis in critically ill infants, but the clinical implications of severe anemia in these patients remain unclear. In this study, we examined preweaned mice to investigate the effects of severe anemia during early infancy on gut mucosal permeability. C57BL/6 mice were subjected to timed phlebotomy between postnatal days (P) 2-10 to induce severe anemia (hematocrits 20%-24%), and intestinal permeability was tracked longitudinally between P10 and P20 as intestine-to-plasma translocation of enteral macromolecules and bacterial translocation. Epithelial junctions were evaluated by electron microscopy, polymerase chain reactions, immunohistochemistry, and/or enzyme immunoassays on intestinal tissues, Caco-2 intestinal epithelial-like cells, and colonic organoids. Preweaned mouse pups showed an age-related susceptibility to severe anemia, with increased intestinal permeability to enteral macromolecules (dextran, ovalbumin, ß-lactoglobulin) and luminal bacteria. Electron micrographs showed increased paracellular permeability and ultrastructural abnormalities of the adherens junctions. These findings were explained by the loss of E-cadherin in epithelial cells, which was caused by destabilization of the E-cadherin (Cdh1) mRNA because of microRNA let-7e-5p binding to the 3'-untranslated region. Severe anemia resulted in a disproportionate and persistent increase in intestinal permeability in preweaned mice because of the disruption of epithelial adherens junctions. These changes are mediated via microRNA let-7e-mediated depletion of Cdh1 mRNA.NEW & NOTEWORTHY This research article shows that newborn infants with severe anemia show an age-related susceptibility to developing increased intestinal permeability to ingested macromolecules. This abnormal permeability develops because of abnormalities in intestinal epithelial junctions caused by a deficiency of the molecule E-cadherin in epithelial cells. The deficiency of E-cadherin is caused by destabilization of its mRNA precursor because of increased expression and binding of another molecule, the microRNA let-7e-5p, to the E-cadherin mRNA.


Asunto(s)
Uniones Adherentes/patología , Anemia Neonatal/patología , Mucosa Intestinal/patología , Intestinos/patología , Uniones Adherentes/ultraestructura , Animales , Animales Recién Nacidos , Células CACO-2 , Cadherinas/genética , Cadherinas/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Permeabilidad , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
BMC Pulm Med ; 20(1): 216, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787821

RESUMEN

BACKGROUND: Taking into consideration a recent surge of a lung injury condition associated with electronic cigarette use, we devised an in vitro model of sub-chronic exposure of human bronchial epithelial cells (HBECs) in air-liquid interface, to determine deterioration of epithelial cell barrier from sub-chronic exposure to cigarette smoke (CS), e-cigarette aerosol (EC), and tobacco waterpipe exposures (TW). METHODS: Products analyzed include commercially available e-liquid, with 0% or 1.2% concentration of nicotine, tobacco blend (shisha), and reference-grade cigarette (3R4F). In one set of experiments, HBECs were exposed to EC (0 and 1.2%), CS or control air for 10 days using 1 cigarette/day. In the second set of experiments, exposure of pseudostratified primary epithelial tissue to TW or control air exposure was performed 1-h/day, every other day, until 3 exposures were performed. After 16-18 h of last exposure, we investigated barrier function/structural integrity of the epithelial monolayer with fluorescein isothiocyanate-dextran flux assay (FITC-Dextran), measurements of trans-electrical epithelial resistance (TEER), assessment of the percentage of moving cilia, cilia beat frequency (CBF), cell motion, and quantification of E-cadherin gene expression by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS: When compared to air control, CS increased fluorescence (FITC-Dextran assay) by 5.6 times, whereby CS and EC (1.2%) reduced TEER to 49 and 60% respectively. CS and EC (1.2%) exposure reduced CBF to 62 and 59%, and cilia moving to 47 and 52%, respectively, when compared to control air. CS and EC (1.2%) increased cell velocity compared to air control by 2.5 and 2.6 times, respectively. The expression of E-cadherin reduced to 39% of control air levels by CS exposure shows an insight into a plausible molecular mechanism. Altogether, EC (0%) and TW exposures resulted in more moderate decreases in epithelial integrity, while EC (1.2%) substantially decreased airway epithelial barrier function comparable with CS exposure. CONCLUSIONS: The results support a toxic effect of sub-chronic exposure to EC (1.2%) as evident by disruption of the bronchial epithelial cell barrier integrity, whereas further research is needed to address the molecular mechanism of this observation as well as TW and EC (0%) toxicity in chronic exposures.


Asunto(s)
Bronquios/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Células Epiteliales/efectos de los fármacos , Humo/efectos adversos , Pipas de Agua , Adulto , Aerosoles , Cilios/efectos de los fármacos , Femenino , Humanos , Pulmón , Masculino , Persona de Mediana Edad , Nicotina/farmacología , Técnicas de Cultivo de Órganos , Nicotiana
11.
Respir Res ; 20(1): 190, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31429757

RESUMEN

BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) have high oxidative stress associated with the severity of the disease. Nuclear factor erythroid-2 related factor 2 (Nrf2)-directed stress response plays a critical role in the protection of lung cells to oxidative stress by upregulating antioxidant genes in response to tobacco smoke. There is a critical gap in our knowledge about Nrf-2 regulated genes in active smokers and former-smokers with COPD in different cell types from of lungs and surrogate peripheral tissues. METHODS: We compared the expression of Nrf2 and six of its target genes in alveolar macrophages, nasal, and bronchial epithelium and peripheral blood mononuclear cells (PBMCs) in current and former smokers with COPD. We compared cell-type specific of Nrf2 and its target genes as well as markers of oxidative and inflammatory stress. RESULTS: We enrolled 89 patients; expression all Nrf2 target gene measured were significantly higher in the bronchial epithelium from smokers compared to non-smokers. None were elevated in alveolar macrophages and only one was elevated in each of the other compartments. CONCLUSION: Bronchial epithelium is the most responsive tissue for transcriptional activation of Nrf2 target genes in active smokers compared to former-smokers with COPD that correlated with oxidative stress and inflammatory markers. There were no consistent trends in gene expression in other cell types tested. TRIAL REGISTRATION: Clinicaltrials.gov : NCT01335971.


Asunto(s)
Antioxidantes/metabolismo , Expresión Génica , Inflamación/genética , Inflamación/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Fumar/genética , Fumar/metabolismo , Anciano , Bronquios/metabolismo , Método Doble Ciego , Epitelio/metabolismo , Femenino , Humanos , Isotiocianatos/uso terapéutico , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/genética , Cese del Hábito de Fumar , Sulfóxidos , Activación Transcripcional
12.
J Immunol ; 198(10): 3815-3822, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28381639

RESUMEN

Embryonic development is highly sensitive to xenobiotic toxicity and in utero exposure to environmental toxins affects physiological responses of the progeny. In the United States, the prevalence of allergic asthma (AA) is inexplicably rising and in utero exposure to cigarette smoke increases the risk of AA and bronchopulmonary dysplasia (BPD) in children and animal models. We reported that gestational exposure to sidestream cigarette smoke (SS), or secondhand smoke, promoted nicotinic acetylcholine receptor-dependent exacerbation of AA and BPD in mice. Recently, perinatal nicotine injections in rats were reported to induce peroxisome proliferator-activated receptor γ-dependent transgenerational transmission of asthma. Herein, we show that first generation and second generation progeny from gestationally SS-exposed mice exhibit exacerbated AA and BPD that is not dependent on the decrease in peroxisome proliferator-activated receptor γ levels. Lungs from these mice show strong eosinophilic infiltration, excessive Th2 polarization, marked airway hyperresponsiveness, alveolar simplification, decreased lung compliance, and decreased lung angiogenesis. At the molecular level, these changes are associated with increased RUNX3 expression, alveolar cell apoptosis, and the antiangiogenic factor GAX, and decreased expression of HIF-1α and proangiogenic factors NF-κB and VEGFR2 in the 7-d first generation and second generation lungs. Moreover, the lungs from these mice exhibit lower levels of microRNA (miR)-130a and increased levels of miR-16 and miR-221. These miRs regulate HIF-1α-regulated apoptotic, angiogenic, and immune pathways. Thus the intergenerational effects of gestational SS involve epigenetic regulation of HIF-1α through specific miRs contributing to increased incidence of AA and BPD in the progenies.


Asunto(s)
Asma/etiología , Asma/genética , Displasia Broncopulmonar/etiología , Epigénesis Genética , Efectos Tardíos de la Exposición Prenatal/inmunología , Humo/efectos adversos , Contaminación por Humo de Tabaco/efectos adversos , Células Epiteliales Alveolares/patología , Animales , Apoptosis , Asma/inmunología , Asma/fisiopatología , Displasia Broncopulmonar/inmunología , Displasia Broncopulmonar/fisiopatología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Femenino , Proteínas de Homeodominio/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Pulmón/patología , Ratones , MicroARNs/genética , Subunidad p50 de NF-kappa B/genética , Factores de Crecimiento Nervioso , Neuropéptidos/genética , Nicotina/efectos adversos , PPAR gamma/genética , PPAR gamma/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Fumar/efectos adversos , Células Th2/inmunología
13.
Am J Respir Crit Care Med ; 198(7): 903-913, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29624409

RESUMEN

RATIONALE: A molecular test to distinguish between sepsis and systemic inflammation of noninfectious etiology could potentially have clinical utility. OBJECTIVES: This study evaluated the diagnostic performance of a molecular host response assay (SeptiCyte LAB) designed to distinguish between sepsis and noninfectious systemic inflammation in critically ill adults. METHODS: The study employed a prospective, observational, noninterventional design and recruited a heterogeneous cohort of adult critical care patients from seven sites in the United States (n = 249). An additional group of 198 patients, recruited in the large MARS (Molecular Diagnosis and Risk Stratification of Sepsis) consortium trial in the Netherlands ( www.clinicaltrials.gov identifier NCT01905033), was also tested and analyzed, making a grand total of 447 patients in our study. The performance of SeptiCyte LAB was compared with retrospective physician diagnosis by a panel of three experts. MEASUREMENTS AND MAIN RESULTS: In receiver operating characteristic curve analysis, SeptiCyte LAB had an estimated area under the curve of 0.82-0.89 for discriminating sepsis from noninfectious systemic inflammation. The relative likelihood of sepsis versus noninfectious systemic inflammation was found to increase with increasing test score (range, 0-10). In a forward logistic regression analysis, the diagnostic performance of the assay was improved only marginally when used in combination with other clinical and laboratory variables, including procalcitonin. The performance of the assay was not significantly affected by demographic variables, including age, sex, or race/ethnicity. CONCLUSIONS: SeptiCyte LAB appears to be a promising diagnostic tool to complement physician assessment of infection likelihood in critically ill adult patients with systemic inflammation. Clinical trial registered with www.clinicaltrials.gov (NCT01905033 and NCT02127502).


Asunto(s)
Cuidados Críticos/métodos , Unidades de Cuidados Intensivos , Sepsis/diagnóstico , Prueba Bactericida de Suero/métodos , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Adulto , Anciano , Estudios de Cohortes , Enfermedad Crítica , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , Estudios Prospectivos , Curva ROC , Estudios Retrospectivos , Sensibilidad y Especificidad , Sepsis/sangre , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Estados Unidos
14.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L581-L591, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28642260

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality. Cigarette smoke (CS) drives disease development and progression. The epithelial barrier is damaged by CS with increased monolayer permeability. However, the molecular changes that cause this barrier disruption and the interaction between adhesion proteins and the cytoskeleton are not well defined. We hypothesized that CS alters monolayer integrity by increasing cell contractility and decreasing cell adhesion in epithelia. Normal human airway epithelial cells and primary COPD epithelial cells were exposed to air or CS, and changes measured in protein levels. We measured the cortical tension of individual cells and the stiffness of cells in a monolayer. We confirmed that the changes in acute and subacute in vitro smoke exposure reflect protein changes seen in cell monolayers and tissue sections from COPD patients. Epithelial cells exposed to repetitive CS and those derived from COPD patients have increased monolayer permeability. E-cadherin and ß-catenin were reduced in smoke exposed cells as well as in lung tissue sections from patients with COPD. Moreover, repetitive CS caused increased tension in individual cells and cells in a monolayer, which corresponded with increased polymerized actin without changes in myosin IIA and IIB total abundance. Repetitive CS exposure impacts the adhesive intercellular junctions and the tension of epithelial cells by increased actin polymer levels, to further destabilize cell adhesion. Similar changes are seen in epithelial cells from COPD patients indicating that these findings likely contribute to COPD pathology.


Asunto(s)
Células Epiteliales/patología , Fumar , Uniones Adherentes/metabolismo , Anciano , Fenómenos Biomecánicos , Cadherinas/metabolismo , Adhesión Celular , Muerte Celular , Permeabilidad de la Membrana Celular , Citoesqueleto/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miosina Tipo II/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/patología
16.
J Immunol ; 192(9): 4453-4464, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24688024

RESUMEN

Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and noninfectious agents and is a leading cause of mortality worldwide. In that context, immunomodulatory strategies may be used to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose LPS can immunologically prime the lung to augment alveolar macrophage production of IL-10 and enhance resolution of lung inflammation induced by a lethal dose of LPS or by Pseudomonas bacterial pneumonia. IL-10-deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage IL-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared with low-dose LPS but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal LPS exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures.


Asunto(s)
Macrófagos Alveolares/inmunología , Neumonía/inmunología , Linfocitos T Reguladores/inmunología , Vacunación/métodos , Animales , Citocinas/biosíntesis , Citometría de Flujo , Interleucina-10/inmunología , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/prevención & control
18.
Am J Respir Cell Mol Biol ; 52(5): 641-52, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25295995

RESUMEN

Acute respiratory distress syndrome (ARDS) is a common and often fatal inflammatory lung condition without effective targeted therapies. Regulatory T cells (Tregs) resolve lung inflammation, but mechanisms that enhance Tregs to promote resolution of established damage remain unknown. DNA demethylation at the forkhead box protein 3 (Foxp3) locus and other key Treg loci typify the Treg lineage. To test how dynamic DNA demethylation affects lung injury resolution, we administered the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC) to wild-type (WT) mice beginning 24 hours after intratracheal LPS-induced lung injury. Mice that received DAC exhibited accelerated resolution of their injury. Lung CD4(+)CD25(hi)Foxp3(+) Tregs from DAC-treated WT mice increased in number and displayed enhanced Foxp3 expression, activation state, suppressive phenotype, and proliferative capacity. Lymphocyte-deficient recombinase activating gene-1-null mice and Treg-depleted (diphtheria toxin-treated Foxp3(DTR)) mice did not resolve their injury in response to DAC. Adoptive transfer of 2 × 10(5) DAC-treated, but not vehicle-treated, exogenous Tregs rescued Treg-deficient mice from ongoing lung inflammation. In addition, in WT mice with influenza-induced lung inflammation, DAC rescue treatment facilitated recovery of their injury and promoted an increase in lung Treg number. Thus, DNA methyltransferase inhibition, at least in part, augments Treg number and function to accelerate repair of experimental lung injury. Epigenetic pathways represent novel manipulable targets for the treatment of ARDS.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Azacitidina/análogos & derivados , Metilasas de Modificación del ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Pulmón/efectos de los fármacos , Neumonía/tratamiento farmacológico , Linfocitos T Reguladores/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/enzimología , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/virología , Traslado Adoptivo , Animales , Azacitidina/farmacología , Células Cultivadas , Quimiotaxis de Leucocito , Metilasas de Modificación del ADN/metabolismo , Decitabina , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Subtipo H1N1 del Virus de la Influenza A , Lipopolisacáridos , Pulmón/enzimología , Pulmón/inmunología , Pulmón/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Neumonía/inducido químicamente , Neumonía/enzimología , Neumonía/inmunología , Neumonía/virología , Linfocitos T Reguladores/enzimología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/trasplante , Linfocitos T Reguladores/virología , Factores de Tiempo
19.
Am J Physiol Lung Cell Mol Physiol ; 308(8): L731-45, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25637609

RESUMEN

The pulmonary epithelium serves as a barrier to prevent access of the inspired luminal contents to the subepithelium. In addition, the epithelium dictates the initial responses of the lung to both infectious and noninfectious stimuli. One mechanism by which the epithelium does this is by coordinating transport of diffusible molecules across the epithelial barrier, both through the cell and between cells. In this review, we will discuss a few emerging paradigms of permeability changes through altered ion transport and paracellular regulation by which the epithelium gates its response to potentially detrimental luminal stimuli. This review is a summary of talks presented during a symposium in Experimental Biology geared toward novel and less recognized methods of epithelial barrier regulation. First, we will discuss mechanisms of dynamic regulation of cell-cell contacts in the context of repetitive exposure to inhaled infectious and noninfectious insults. In the second section, we will briefly discuss mechanisms of transcellular ion homeostasis specifically focused on the role of claudins and paracellular ion-channel regulation in chronic barrier dysfunction. In the next section, we will address transcellular ion transport and highlight the role of Trek-1 in epithelial responses to lung injury. In the final section, we will outline the role of epithelial growth receptor in barrier regulation in baseline, acute lung injury, and airway disease. We will then end with a summary of mechanisms of epithelial control as well as discuss emerging paradigms of the epithelium role in shifting between a structural element that maintains tight cell-cell adhesion to a cell that initiates and participates in immune responses.


Asunto(s)
Mucosa Respiratoria/fisiología , Animales , Transporte Biológico , Epitelio/fisiología , Humanos , Pulmón/citología , Pulmón/fisiología , Permeabilidad , Alveolos Pulmonares/citología , Alveolos Pulmonares/fisiología , Uniones Estrechas/fisiología
20.
Am J Physiol Lung Cell Mol Physiol ; 309(1): L27-36, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25957295

RESUMEN

Asthma development and pathogenesis are influenced by the interactions of airway epithelial cells and innate and adaptive immune cells in response to allergens. Oxidative stress is an important mediator of asthmatic phenotypes in these cell types. Nuclear erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that is the key regulator of the response to oxidative and environmental stress. We previously demonstrated that Nrf2-deficient mice have heightened susceptibility to asthma, including elevated oxidative stress, inflammation, mucus, and airway hyperresponsiveness (AHR) (Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, Yamamoto M, Kensler TW, Tuder RM, Georas SN, Biswal S. J Exp Med 202: 47-59, 2005). Here we dissected the role of Nrf2 in lung epithelial cells and tested whether genetic or pharmacological activation of Nrf2 reduces allergic asthma in mice. Cell-specific activation of Nrf2 in club cells of the airway epithelium significantly reduced allergen-induced AHR, inflammation, mucus, Th2 cytokine secretion, oxidative stress, and airway leakiness and increased airway levels of tight junction proteins zonula occludens-1 and E-cadherin. In isolated airway epithelial cells, Nrf2 enhanced epithelial barrier function and increased localization of zonula occludens-1 to the cell surface. Pharmacological activation of Nrf2 by 2-trifluoromethyl-2'-methoxychalone during the allergen challenge was sufficient to reduce allergic inflammation and AHR. New therapeutic options are needed for asthma, and this study demonstrates that activation of Nrf2 in lung epithelial cells is a novel potential therapeutic target to reduce asthma susceptibility.


Asunto(s)
Asma/patología , Hiperreactividad Bronquial/patología , Factor 2 Relacionado con NF-E2/metabolismo , Uniones Estrechas/inmunología , Proteína de la Zonula Occludens-1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Asma/inducido químicamente , Asma/inmunología , Cadherinas/metabolismo , Chalconas/farmacología , Citocinas/inmunología , Citocinas/metabolismo , Citoprotección , Proteínas del Citoesqueleto/genética , Células Epiteliales/metabolismo , Inflamación/inmunología , Proteína 1 Asociada A ECH Tipo Kelch , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Ovalbúmina , Estrés Oxidativo/inmunología , Mucosa Respiratoria/citología , Células Th2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA