RESUMEN
The manipulation of spin-phonon coupling in both formations and explorations of magnetism in two-dimensional van der Waals ferromagnetic semiconductors facilitates unprecedented prospects for spintronic devices. The interlayer engineering with spin-phonon coupling promises controllable magnetism via organic cation intercalation. Here, spectroscopic evidence reveals the intercalation effect on the intrinsic magnetic and electronic transitions in quasi-two-dimensional Cr2Ge2Te6 using tetrabutyl ammonium (TBA+) as the intercalant. The temperature evolution of Raman modes, Eg3 and Ag1, along with the magnetization measurements, unambiguously captures the enhancement of the ferromagnetic Curie temperature in the intercalated heterostructure. Moreover, the Eg4 mode highlights the increased effect of spin-phonon interaction in magnetic-order-induced lattice distortion. Combined with the first-principle calculations, we observed a substantial number of electrons transferred from TBA+ to Cr through the interface. The interplay between spin-phonon coupling and magnetic ordering in van der Waals magnets appeals for further understanding of the manipulation of magnetism in layered heterostructures.
RESUMEN
Layered metal thio- and selenophosphates (MTPs) are a family of van der Waals gapped materials that exhibit a multitude of functionalities in terms of magnetic, ferroelectric, and optical properties. Despite the recent progress in terms of understanding the material properties of these compounds, the potential of MTPs as a material class yet needs further scrutiny, especially in terms of nonlinear optical properties. Recent reports of efficient low-order harmonic generation and extremely high third-order nonlinear optical properties in MTPs suggest the potential application of these materials in integrated nanophotonics. In this article, we investigate the high-order nonlinear response of bulk and exfoliated thin-film crystals of copper indium thiophosphate (CIPS) to intense mid-infrared fields through experimental and computational studies of high-order harmonic generation (HHG). From a driving laser source with a 3.2 µm wavelength, we generate odd and even harmonics up to the 10th order, exceeding the bandgap of the material. We note conversion efficiencies as high as 10-7 measured for the fifth and seventh harmonics and observe that the harmonic intensities follow a power law scaling with the driving laser intensity, suggesting a perturbative nonlinear optical origin of the observed harmonics for both bulk and thin flakes. Furthermore, first-principles calculations suggest that the generation of the highest harmonic orders results from electron-electron interactions, suggesting a correlation-mediated enhancement of the high-order optical nonlinearity.
RESUMEN
Research in two-dimensional layered materials (2DLMs) has exploded over the past several years for a variety of applications in photonics and optoelectronics. The 2D nature of these materials allows for a very local electronic probe of material as well as flexible integration with other functional components. Herein, using the femtosecond Z-scan technique, we report a giant two photon absorption (TPA) process and its saturation in the van der Waals gapped silver scandium thiophosphate (AgScP2S6) crystal. We have found a TPA coefficient of the order of 104 cm/GW which is orders of magnitude larger compared to many existing semiconductors and nonlinear crystals. Furthermore, we found a TPA cross-section of 103 GM and characterized the optical limiting (OL) response (0.2 mJ/cm2) and the multipulse laser damage threshold (1.09 ± 0.19 J/cm2). The combination of giant TPA, extremely low OL, and very high damage threshold suggests that this material could be extremely useful in applications like optical limiters or switches.
RESUMEN
The advancement of ultrafast photonics and optoelectronic devices necessitates the exploration of new materials with optical and chemical stability to implement practical applications. Layered quaternary metal-thio/selenophosphate has attracted much interest over the past few years. Ferroelectric CuInP2S6 (CIPS) is an emerging material that belongs to this family. When synthesized with Cu deficiencies, CIPS forms self-assembled in-plane heterostructures, which in turn exhibit properties that are both compositionally and thermally dependent. These characteristics can be explored for applications in nonlinear optoelectronic and photonic devices. Herein, we study the second and third order nonlinear optical behavior of Cu0.33In1.30P2S6 bulk heterostructure. We observed large two photon induced nonlinear absorptions and self-defocusing at 1032 nm pulsed laser excitation using the Z-scan technique. Furthermore, we identified a polarization-dependent second harmonic signal and determined the laser-induced optical damage threshold. Our observations allow for the designing of optoelectronic and ultrafast photonic devices based on these materials.