Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 77(2): 558-572, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35712786

RESUMEN

BACKGROUND AND AIMS: Reliable noninvasive biomarkers are an unmet clinical need for the diagnosis of NASH. This study investigates the diagnostic accuracy of the circulating triggering receptor expressed on myeloid cells 2 (plasma TREM2) as a biomarker for NASH in patients with NAFLD and elevated liver stiffness. APPROACH AND RESULTS: We collected cross-sectional, clinical data including liver biopsies from a derivation ( n = 48) and a validation cohort ( n = 170) of patients with elevated liver stiffness measurement (LSM ≥ 8.0 kPa). Patients with NAFLD activity scores (NAS) ≥4 were defined as having NASH. Plasma TREM2 levels were significantly elevated in patients with NASH of the derivation cohort, with an area under the receiver operating characteristics curve (AUROC) of 0.92 (95% confidence interval [CI], 0.84-0.99). In the validation cohort, plasma TREM2 level increased approximately two-fold in patients with NASH, and a strong diagnostic accuracy was confirmed (AUROC, 0.83; 95% CI, 0.77-0.89; p < 0.0001). Plasma TREM2 levels were associated with the individual histologic features of NAS: steatosis, lobular inflammation, and ballooning ( p < 0.0001), but only weakly with fibrosis stages. Dual cutoffs for rule-in and rule-out were explored: a plasma TREM2 level of ≤38 ng/ml was found to be an optimal NASH rule-out cutoff (sensitivity 90%; specificity 52%), whereas a plasma TREM2 level of ≥65 ng/ml was an optimal NASH rule-in cutoff (specificity 89%; sensitivity 54%). CONCLUSIONS: Plasma TREM2 is a plausible individual biomarker that can rule-in or rule-out the presence of NASH with high accuracy and thus has the potential to reduce the need for liver biopsies and to identify patients who are eligible for clinical trials in NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/patología , Cirrosis Hepática/patología , Estudios Transversales , Biomarcadores , Biopsia , Glicoproteínas de Membrana , Receptores Inmunológicos
2.
Genes Dev ; 29(1): 7-22, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25504365

RESUMEN

Long-term exposure to peroxisome proliferator-activated receptor γ (PPARγ) agonists such as rosiglitazone induces browning of rodent and human adipocytes; however, the transcriptional mechanisms governing this phenotypic switch in adipocytes are largely unknown. Here we show that rosiglitazone-induced browning of human adipocytes activates a comprehensive gene program that leads to increased mitochondrial oxidative capacity. Once induced, this gene program and oxidative capacity are maintained independently of rosiglitazone, suggesting that additional browning factors are activated. Browning triggers reprogramming of PPARγ binding, leading to the formation of PPARγ "superenhancers" that are selective for brown-in-white (brite) adipocytes. These are highly associated with key brite-selective genes. Based on such an association, we identified an evolutionarily conserved metabolic regulator, Kruppel-like factor 11 (KLF11), as a novel browning transcription factor in human adipocytes that is required for rosiglitazone-induced browning, including the increase in mitochondrial oxidative capacity. KLF11 is directly induced by PPARγ and appears to cooperate with PPARγ in a feed-forward manner to activate and maintain the brite-selective gene program.


Asunto(s)
Adipocitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Proteínas Represoras/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos Marrones/citología , Proteínas Reguladoras de la Apoptosis , Proteínas de Ciclo Celular/genética , Reprogramación Celular , Cromatina/metabolismo , Regulación de la Expresión Génica , Humanos , Hipoglucemiantes/farmacología , Mitocondrias/efectos de los fármacos , Oxidación-Reducción , Unión Proteica , Proteínas Represoras/genética , Rosiglitazona , Tiazolidinedionas/farmacología , Activación Transcripcional/efectos de los fármacos
3.
Endocrinology ; 164(10)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37610219

RESUMEN

Hepatic lipid metabolism is highly dynamic, and disruption of several circadian transcriptional regulators results in hepatic steatosis. This includes genetic disruption of the glucocorticoid receptor (GR) as the liver develops. To address the functional role of GR in the adult liver, we used an acute hepatocyte-specific GR knockout model to study temporal hepatic lipid metabolism governed by GR at several preprandial and postprandial circadian timepoints. Lipidomics analysis revealed significant temporal lipid metabolism, where GR disruption results in impaired regulation of specific triglycerides, nonesterified fatty acids, and sphingolipids. This correlates with increased number and size of lipid droplets and mildly reduced mitochondrial respiration, most noticeably in the postprandial phase. Proteomics and transcriptomics analyses suggest that dysregulated lipid metabolism originates from pronounced induced expression of enzymes involved in fatty acid synthesis, ß-oxidation, and sphingolipid metabolism. Integration of GR cistromic data suggests that induced gene expression is a result of regulatory actions secondary to direct GR effects on gene transcription.


Asunto(s)
Metabolismo de los Lípidos , Receptores de Glucocorticoides , Masculino , Animales , Ratones , Metabolismo de los Lípidos/genética , Receptores de Glucocorticoides/genética , Hepatocitos , Hígado , Adipogénesis
4.
Sci Rep ; 10(1): 14052, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32820201

RESUMEN

C57BL/6J-related mouse strains are widely used animal models for diet-induced obesity (DIO). Multiple vendors breed C57BL/6J-related substrains which may introduce genetic drift and environmental confounders such as microbiome differences. To address potential vendor/substrain specific effects, we compared DIO of C57BL/6J-related substrains from three different vendors: C57BL/6J (Charles Rivers), C57BL/6JBomTac (Taconic Bioscience) and C57BL/6JRj (Janvier). After local acclimatization, DIO was induced by either a high-fat diet (HFD, 60% energy from fat) or western diet (WD, 42% energy from fat supplemented with fructose in the drinking water). All three groups on HFD gained a similar amount of total body weight, yet the relative amount of fat percentage and mass of inguinal- and epididymal white adipose tissue (iWAT and eWAT) was lower in C57BL/6JBomTac compared to the two other C57BL/6J-releated substrains. In contrast to HFD, the three groups on WD responded differently in terms of body weight gain, where C57BL/6J was particularly prone to WD. This was associated with a relative higher amount of eWAT, iWAT, and liver triglycerides. Although the HFD and WD had significant impact on the microbiota, we did not observe any major differences between the three groups of mice. Together, these data demonstrate significant differences in HFD- and WD-induced adiposity in C57BL/6J-related substrains, which should be considered in the design of animal DIO studies.


Asunto(s)
Dieta Alta en Grasa , Absorciometría de Fotón , Animales , Peso Corporal , Glucosa/administración & dosificación , Insulina/sangre , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Tamaño de los Órganos , Especificidad de la Especie , Triglicéridos/metabolismo , Aumento de Peso
5.
Cell Rep ; 21(13): 3662-3671, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29281816

RESUMEN

Physiologic turnover of interstitial collagen is mediated by a sequential pathway in which collagen is fragmented by pericellular collagenases, endocytosed by collagen receptors, and routed to lysosomes for degradation by cathepsins. Here, we use intravital microscopy to investigate if malignant tumors, which are characterized by high rates of extracellular matrix turnover, utilize a similar collagen degradation pathway. Tumors of epithelial, mesenchymal, or neural crest origin all display vigorous endocytic collagen degradation. The cells engaged in this process are identified as tumor-associated macrophage (TAM)-like cells that degrade collagen in a mannose receptor-dependent manner. Accordingly, mannose-receptor-deficient mice display increased intratumoral collagen. Whole-transcriptome profiling uncovers a distinct extracellular matrix-catabolic signature of these collagen-degrading TAMs. Lineage-ablation studies reveal that collagen-degrading TAMs originate from circulating CCR2+ monocytes. This study identifies a function of TAMs in altering the tumor microenvironment through endocytic collagen turnover and establishes macrophages as centrally engaged in tumor-associated collagen degradation.


Asunto(s)
Movimiento Celular , Colágeno/metabolismo , Endocitosis , Inflamación/patología , Macrófagos/patología , Monocitos/patología , Neoplasias/patología , Proteolisis , Animales , Polaridad Celular , Matriz Extracelular/metabolismo , Lectinas Tipo C , Macrófagos/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa , Ratones Endogámicos C57BL , Neoplasias/genética , Ratas , Receptores CCR2/metabolismo , Receptores de Superficie Celular , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA