Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Trends Immunol ; 41(7): 614-628, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32467029

RESUMEN

Control of diverse pathogens requires an adaptive antibody response, dependent on cellular division of labor to allocate antigen-dependent B- and CD4+ T-cell fates that collaborate to control the quantity and quality of antibody. This is orchestrated by the dynamic action of key transcriptional regulators mediating gene expression programs in response to pathogen-specific environmental inputs. We describe a conserved, likely ancient, gene regulatory network that intriguingly operates contemporaneously in B and CD4+ T cells to control their cell fate dynamics and thus, the character of the antibody response. The remarkable output of this network derives from graded expression, designated by antigen receptor signal strength, of a pivotal transcription factor that regulates alternate cell fate choices.


Asunto(s)
Formación de Anticuerpos , Linfocitos B , Redes Reguladoras de Genes , Factores Reguladores del Interferón , Linfocitos T Colaboradores-Inductores , Animales , Formación de Anticuerpos/genética , Linfocitos B/inmunología , Diferenciación Celular , Regulación de la Expresión Génica , Humanos , Factores Reguladores del Interferón/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
2.
J Immunol ; 207(12): 2992-3003, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34759017

RESUMEN

The germinal center (GC) reaction is a coordinated and dynamic ensemble of cells and processes that mediate the maturation and selection of high-affinity GC B cells (GCBs) from lower-affinity precursors and ultimately results in plasma cell and memory cell fates that exit the GC. It is of great interest to identify intrinsic and extrinsic factors that control the selection process. The transcription factor IRF4, induced upon BCR and CD40 signaling, is essential for the acquisition of plasma cell and GCB cell fates. We hypothesized that beyond this early requirement, IRF4 continuously operates at later phases of the B cell response. We show that IRF4 is expressed in GCBs at levels greater than seen in resting cells and plays a role in efficient selection of high-affinity GCBs. Halving Irf4 gene copy number in an Ag-specific murine B cell model, we found that Ag presentation, isotype switching, GC formation and zonation, somatic hypermutation rates, and proliferation were comparable with cells with a full Irf4 allelic complement. In contrast, Irf4 haploinsufficient GCBs exhibited impaired generation of high-affinity cells. Mechanistically, we demonstrate suboptimal Blimp-1 regulation among high-affinity Irf4 haploinsufficient GCBs. Furthermore, in cotransfer settings, we observed a marked disadvantage of Irf4 haploinsufficient cells for GC entry, evidential of ineffective recruitment of T cell help. We propose that, analogous to its role in early GC entry, IRF4 continues to function in the late phase of the Ab response to promote productive T follicular helper cell interactions and to activate optimal Blimp-1 expression during GC selection and affinity maturation.


Asunto(s)
Linfocitos B , Haploinsuficiencia , Animales , Linfocitos B/metabolismo , Diferenciación Celular/genética , Centro Germinal/metabolismo , Ratones , Células Plasmáticas/metabolismo
3.
STAR Protoc ; 2(3): 100633, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34258594

RESUMEN

Molecular-level understanding of plasma cell (PC) differentiation has been modeled using lipopolysaccharide (LPS) stimulation in vitro. However, this system does not involve the B-cell receptor (BCR)-a critical component of B cell biology. Here, we present a protocol for in vitro PC differentiation system dependent on BCR signaling that easily scales up for cell number-demanding applications, including protein complex purification. We describe how to set up this system and detail applications for endogenous complex purification of chromatin-associated proteins. For further details on the use and execution of this protocol, please refer to Sciammas et al. (2011) and Ochiai et al. (2018, 2020).


Asunto(s)
Diferenciación Celular , Cromatina/metabolismo , Células Plasmáticas/citología , Proteínas/aislamiento & purificación , Receptores de Antígenos de Linfocitos B/metabolismo , Animales , Cromatografía Liquida/métodos , Medios de Cultivo , Ratones , Ratones Transgénicos , Proteínas/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA