Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37049957

RESUMEN

In recent years, one of the main goals of cartilage tissue engineering has been to find appropriate scaffolds for hyaline cartilage regeneration, which could serve as a matrix for chondrocytes or stem cell cultures. The study presents three types of scaffolds obtained from a blend of polyethersulfone (PES) and polyurethane (PUR) by a combination of wet-phase inversion and salt-leaching methods. The nonwovens made of gelatin and sodium chloride (NaCl) were used as precursors of macropores. Thus, obtained membranes were characterized by a suitable structure. The top layers were perforated, with pores over 20 µm, which allows cells to enter the membrane. The use of a nonwoven made it possible to develop a three-dimensional network of interconnected macropores that is required for cell activity and mobility. Examination of wettability (contact angle, swelling ratio) showed a hydrophilic nature of scaffolds. The mechanical test showed that the scaffolds were suitable for knee joint applications (stress above 10 MPa). Next, the scaffolds underwent a degradation study in simulated body fluid (SBF). Weight loss after four weeks and changes in structure were assessed using scanning electron microscopy (SEM) and MeMoExplorer Software, a program that estimates the size of pores. The porosity measurements after degradation confirmed an increase in pore size, as expected. Hydrolysis was confirmed by Fourier-transform infrared spectroscopy (FT-IR) analysis, where the disappearance of ester bonds at about 1730 cm-1 wavelength is noticeable after degradation. The obtained results showed that the scaffolds meet the requirements for cartilage tissue engineering membranes and should undergo further testing on an animal model.


Asunto(s)
Poliuretanos , Ingeniería de Tejidos , Animales , Ingeniería de Tejidos/métodos , Poliuretanos/química , Andamios del Tejido/química , Espectroscopía Infrarroja por Transformada de Fourier , Células Cultivadas , Cartílago/metabolismo , Polímeros/química , Condrocitos/metabolismo , Porosidad
2.
Polymers (Basel) ; 13(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923596

RESUMEN

This work was focused on biodegradation with Escherichia coli bacteria studies of PSF-PUR blend semipermeable hollow fiber membranes that possibly can undergo a partial degradation process. Hollow fiber membranes were obtained from polysulfone (PSF) and polyurethane (PUR) containing ester bonds in the polymer chain in various weight ratios using two solvents: N,N-Dimethylmethanamide (DMF) or N-Methylpyrrolidone (NMP). The membranes that underwent the biodegradation process were tested for changes in the ultrafiltration coefficient (UFC), retention and cut-off point. Moreover, the membranes were subjected to scanning electron microscopy (SEM), MeMoExplorerTM Software and Fourier-transform infrared spectroscopy (FT-IR) analysis. The influence of E. coli and its metabolites has been proven by the increase in UFC after biodegradation and changes in the selectivity and porosity of individual membranes after the biodegradation process.

3.
Membranes (Basel) ; 11(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445806

RESUMEN

In this study, we focused on obtaining polysulfone-polyurethane (PSF-PUR) blend partly degradable hollow fiber membranes (HFMs) with different compositions while maintaining a constant PSF:PUR = 8:2 weight ratio. It was carried out through hydrolysis, and evaluation of the properties and morphology before and after the hydrolysis process while maintaining a constant cut-off. The obtained membranes were examined for changes in ultrafiltration coefficient (UFC), retention, weight loss, morphology assessment using scanning electron microscopy (SEM) and MeMoExplorer™ Software, as well as using the Fourier-transform infrared spectroscopy (FT-IR) method. The results of the study showed an increase in the UFC value after the hydrolysis process, changes in retention, mass loss, and FT-IR spectra. The evaluation in MeMoExplorer™ Software showed the changes in membranes' morphology. It was confirmed that polyurethane (PUR) was partially degraded, the percentage of ester bonds has an influence on the degradation process, and PUR can be used as a pore precursor instead of superbly known polymers.

4.
Membranes (Basel) ; 10(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212901

RESUMEN

Cartilage tissue is under extensive investigation in tissue engineering and regenerative medicine studies because of its limited regenerative potential. Currently, many scaffolds are undergoing scientific and clinical research. A key for appropriate scaffolding is the assurance of a temporary cellular environment that allows the cells to function as in native tissue. These scaffolds should meet the relevant requirements, including appropriate architecture and physicochemical and biological properties. This is necessary for proper cell growth, which is associated with the adequate regeneration of cartilage. This paper presents a review of the development of scaffolds from synthetic polymers and hybrid materials employed for the engineering of cartilage tissue and regenerative medicine. Initially, general information on articular cartilage and an overview of the clinical strategies for the treatment of cartilage defects are presented. Then, the requirements for scaffolds in regenerative medicine, materials intended for membranes, and methods for obtaining them are briefly described. We also describe the hybrid materials that combine the advantages of both synthetic and natural polymers, which provide better properties for the scaffold. The last part of the article is focused on scaffolds in cartilage tissue engineering that have been confirmed by undergoing preclinical and clinical tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA