Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(22): 4920-4935.e23, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37776859

RESUMEN

SpCas9 and AsCas12a are widely utilized as genome-editing tools in human cells. However, their relatively large size poses a limitation for delivery by cargo-size-limited adeno-associated virus (AAV) vectors. The type V-F Cas12f from Acidibacillus sulfuroxidans is exceptionally compact (422 amino acids) and has been harnessed as a compact genome-editing tool. Here, we developed an approach, combining deep mutational scanning and structure-informed design, to successfully generate two AsCas12f activity-enhanced (enAsCas12f) variants. Remarkably, the enAsCas12f variants exhibited genome-editing activities in human cells comparable with those of SpCas9 and AsCas12a. The cryoelectron microscopy (cryo-EM) structures revealed that the mutations stabilize the dimer formation and reinforce interactions with nucleic acids to enhance their DNA cleavage activities. Moreover, enAsCas12f packaged with partner genes in an all-in-one AAV vector exhibited efficient knock-in/knock-out activities and transcriptional activation in mice. Taken together, enAsCas12f variants could offer a minimal genome-editing platform for in vivo gene therapy.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Humanos , Ratones , Microscopía por Crioelectrón , Mutación , Terapia Genética
2.
Nature ; 627(8003): 431-436, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383786

RESUMEN

To survive bacteriophage (phage) infections, bacteria developed numerous anti-phage defence systems1-7. Some of them (for example, type III CRISPR-Cas, CBASS, Pycsar and Thoeris) consist of two modules: a sensor responsible for infection recognition and an effector that stops viral replication by destroying key cellular components8-12. In the Thoeris system, a Toll/interleukin-1 receptor (TIR)-domain protein, ThsB, acts as a sensor that synthesizes an isomer of cyclic ADP ribose, 1''-3' glycocyclic ADP ribose (gcADPR), which is bound in the Smf/DprA-LOG (SLOG) domain of the ThsA effector and activates the silent information regulator 2 (SIR2)-domain-mediated hydrolysis of a key cell metabolite, NAD+ (refs. 12-14). Although the structure of ThsA has been solved15, the ThsA activation mechanism remained incompletely understood. Here we show that 1''-3' gcADPR, synthesized in vitro by the dimeric ThsB' protein, binds to the ThsA SLOG domain, thereby activating ThsA by triggering helical filament assembly of ThsA tetramers. The cryogenic electron microscopy (cryo-EM) structure of activated ThsA revealed that filament assembly stabilizes the active conformation of the ThsA SIR2 domain, enabling rapid NAD+ depletion. Furthermore, we demonstrate that filament formation enables a switch-like response of ThsA to the 1''-3' gcADPR signal.


Asunto(s)
Bacterias , Proteínas Bacterianas , Bacteriófagos , Adenosina Difosfato Ribosa/análogos & derivados , Adenosina Difosfato Ribosa/biosíntesis , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Bacterias/metabolismo , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/química , Bacteriófagos/metabolismo , Bacteriófagos/ultraestructura , Microscopía por Crioelectrón , Hidrólisis , NAD/metabolismo , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica
3.
Nature ; 616(7956): 384-389, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020015

RESUMEN

The widespread TnpB proteins of IS200/IS605 transposon family have recently emerged as the smallest RNA-guided nucleases capable of targeted genome editing in eukaryotic cells1,2. Bioinformatic analysis identified TnpB proteins as the likely predecessors of Cas12 nucleases3-5, which along with Cas9 are widely used for targeted genome manipulation. Whereas Cas12 family nucleases are well characterized both biochemically and structurally6, the molecular mechanism of TnpB remains unknown. Here we present the cryogenic-electron microscopy structures of the Deinococcus radiodurans TnpB-reRNA (right-end transposon element-derived RNA) complex in DNA-bound and -free forms. The structures reveal the basic architecture of TnpB nuclease and the molecular mechanism for DNA target recognition and cleavage that is supported by biochemical experiments. Collectively, these results demonstrate that TnpB represents the minimal structural and functional core of the Cas12 protein family and provide a framework for developing TnpB-based genome editing tools.


Asunto(s)
Proteínas Asociadas a CRISPR , Elementos Transponibles de ADN , Deinococcus , Endonucleasas , Edición Génica , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Microscopía por Crioelectrón , Deinococcus/enzimología , Deinococcus/genética , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Elementos Transponibles de ADN/genética , Endonucleasas/química , Endonucleasas/clasificación , Endonucleasas/metabolismo , Endonucleasas/ultraestructura , Evolución Molecular , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas
4.
Mol Cell ; 80(6): 955-970.e7, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33290744

RESUMEN

Prokaryotic toxin-antitoxin (TA) systems are composed of a toxin capable of interfering with key cellular processes and its neutralizing antidote, the antitoxin. Here, we focus on the HEPN-MNT TA system encoded in the vicinity of a subtype I-D CRISPR-Cas system in the cyanobacterium Aphanizomenon flos-aquae. We show that HEPN acts as a toxic RNase, which cleaves off 4 nt from the 3' end in a subset of tRNAs, thereby interfering with translation. Surprisingly, we find that the MNT (minimal nucleotidyltransferase) antitoxin inhibits HEPN RNase through covalent di-AMPylation (diadenylylation) of a conserved tyrosine residue, Y109, in the active site loop. Furthermore, we present crystallographic snapshots of the di-AMPylation reaction at different stages that explain the mechanism of HEPN RNase inactivation. Finally, we propose that the HEPN-MNT system functions as a cellular ATP sensor that monitors ATP homeostasis and, at low ATP levels, releases active HEPN toxin.


Asunto(s)
Antitoxinas/genética , Toxinas Bacterianas/genética , Ribonucleasas/genética , Sistemas Toxina-Antitoxina/genética , Adenosina Monofosfato/genética , Antídotos/química , Antitoxinas/metabolismo , Aphanizomenon/química , Aphanizomenon/genética , Sistemas CRISPR-Cas/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Ribonucleasas/metabolismo , Tirosina/genética
5.
Nature ; 599(7886): 692-696, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619744

RESUMEN

Transposition has a key role in reshaping genomes of all living organisms1. Insertion sequences of IS200/IS605 and IS607 families2 are among the simplest mobile genetic elements and contain only the genes that are required for their transposition and its regulation. These elements encode tnpA transposase, which is essential for mobilization, and often carry an accessory tnpB gene, which is dispensable for transposition. Although the role of TnpA in transposon mobilization of IS200/IS605 is well documented, the function of TnpB has remained largely unknown. It had been suggested that TnpB has a role in the regulation of transposition, although no mechanism for this has been established3-5. A bioinformatic analysis indicated that TnpB might be a predecessor of the CRISPR-Cas9/Cas12 nucleases6-8. However, no biochemical activities have been ascribed to TnpB. Here we show that TnpB of Deinococcus radiodurans ISDra2 is an RNA-directed nuclease that is guided by an RNA, derived from the right-end element of a transposon, to cleave DNA next to the 5'-TTGAT transposon-associated motif. We also show that TnpB could be reprogrammed to cleave DNA target sites in human cells. Together, this study expands our understanding of transposition mechanisms by highlighting the role of TnpB in transposition, experimentally confirms that TnpB is a functional progenitor of CRISPR-Cas nucleases and establishes TnpB as a prototype of a new system for genome editing.


Asunto(s)
Elementos Transponibles de ADN/genética , Deinococcus/enzimología , Deinococcus/genética , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , ARN/genética , Secuencia de Bases , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/genética , Edición Génica , Células HEK293 , Humanos , Motivos de Nucleótidos
6.
Mol Cell ; 75(1): 90-101.e5, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31080012

RESUMEN

CRISPR and associated Cas proteins function as an adaptive immune system in prokaryotes to combat bacteriophage infection. During the immunization step, new spacers are acquired by the CRISPR machinery, but the molecular mechanism of spacer capture remains enigmatic. We show that the Cas9, Cas1, Cas2, and Csn2 proteins of a Streptococcus thermophilus type II-A CRISPR-Cas system form a complex and provide cryoelectron microscopy (cryo-EM) structures of three different assemblies. The predominant form, with the stoichiometry Cas18-Cas24-Csn28, referred to as monomer, contains ∼30 bp duplex DNA bound along a central channel. A minor species, termed a dimer, comprises two monomers that sandwich a further eight Cas1 and four Cas2 subunits and contains two DNA ∼30-bp duplexes within the channel. A filamentous form also comprises Cas18-Cas24-Csn28 units (typically 2-6) but with a different Cas1-Cas2 interface between them and a continuous DNA duplex running along a central channel.


Asunto(s)
Proteína 9 Asociada a CRISPR/química , Sistemas CRISPR-Cas , ADN Intergénico/química , ADN/química , Streptococcus thermophilus/genética , Secuencia de Bases , Sitios de Unión , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Clonación Molecular , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , ADN Intergénico/genética , ADN Intergénico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus thermophilus/metabolismo , Especificidad por Sustrato
7.
Nucleic Acids Res ; 52(6): 3234-3248, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38261981

RESUMEN

Cas9 and Cas12 nucleases of class 2 CRISPR-Cas systems provide immunity in prokaryotes through RNA-guided cleavage of foreign DNA. Here we characterize a set of compact CRISPR-Cas12m (subtype V-M) effector proteins and show that they provide protection against bacteriophages and plasmids through the targeted DNA binding rather than DNA cleavage. Biochemical assays suggest that Cas12m effectors can act as roadblocks inhibiting DNA transcription and/or replication, thereby triggering interference against invaders. Cryo-EM structure of Gordonia otitidis (Go) Cas12m ternary complex provided here reveals the structural mechanism of DNA binding ensuring interference. Harnessing GoCas12m innate ability to bind DNA target we fused it with adenine deaminase TadA-8e and showed an efficient A-to-G editing in Escherichia coli and human cells. Overall, this study expands our understanding of the functionally diverse Cas12 protein family, revealing DNA-binding dependent interference mechanism of Cas12m effectors that could be harnessed for engineering of compact base-editing tools.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , ADN/genética , Endonucleasas/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo
8.
EMBO Rep ; 23(12): e55481, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36268581

RESUMEN

Most CRISPR-type V nucleases are stimulated to cleave double-stranded (ds) DNA targets by a T-rich PAM, which restricts their targeting range. Here, we identify and characterize a new family of type V RNA-guided nuclease, Cas12l, that exclusively recognizes a C-rich (5'-CCY-3') PAM. The organization of genes within its CRISPR locus is similar to type II-B CRISPR-Cas9 systems, but both sequence analysis and functional studies establish it as a new family of type V effector. Biochemical experiments show that Cas12l nucleases function optimally between 37 and 52°C, depending on the ortholog, and preferentially cut supercoiled DNA. Like other type V nucleases, it exhibits collateral nonspecific ssDNA and ssRNA cleavage activity that is triggered by ssDNA or dsDNA target recognition. Finally, we show that one family member, Asp2Cas12l, functions in a heterologous cellular environment, altogether, suggesting that this new group of CRISPR-associated nucleases may be harnessed as genome editing reagents.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
9.
Mol Cell ; 61(6): 793-4, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990984

RESUMEN

Papers by Anders et al. (2016) and Hirano et al. (2016b), published in this issue of Molecular Cell, show that SpCas9 uses an induced fit mechanism to recognize altered protospacer adjacent motif (PAM) sequences.


Asunto(s)
Proteínas Bacterianas/química , Sistemas CRISPR-Cas , ADN Intergénico/genética , Endonucleasas/química , ARN Guía de Kinetoplastida/química
10.
Mol Cell ; 62(2): 295-306, 2016 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-27105119

RESUMEN

Streptococcus thermophilus (St) type III-A CRISPR-Cas system restricts MS2 RNA phage and cuts RNA in vitro. However, the CRISPR array spacers match DNA phages, raising the question: does the St CRISPR-Cas system provide immunity by erasing phage mRNA or/and by eliminating invading DNA? We show that it does both. We find that (1) base-pairing between crRNA and target RNA activates single-stranded DNA (ssDNA) degradation by StCsm; (2) ssDNase activity is confined to the HD-domain of Cas10; (3) target RNA cleavage by the Csm3 RNase suppresses Cas10 DNase activity, ensuring temporal control of DNA degradation; and (4) base-pairing between crRNA 5'-handle and target RNA 3'-flanking sequence inhibits Cas10 ssDNase to prevent self-targeting. We propose that upon phage infection, crRNA-guided StCsm binding to the emerging transcript recruits Cas10 DNase to the actively transcribed phage DNA, resulting in degradation of both the transcript and phage DNA, but not the host DNA.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , ADN Viral/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Streptococcus thermophilus/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/inmunología , Sistemas CRISPR-Cas/inmunología , ADN Bacteriano/genética , ADN Bacteriano/inmunología , ADN de Cadena Simple/genética , ADN de Cadena Simple/inmunología , ADN Viral/genética , ADN Viral/inmunología , Escherichia coli/genética , Escherichia coli/inmunología , Escherichia coli/virología , Interacciones Huésped-Patógeno , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Conformación Proteica , División del ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Viral/genética , ARN Viral/inmunología , ADN Polimerasa Dirigida por ARN/genética , Streptococcus thermophilus/genética , Streptococcus thermophilus/inmunología , Streptococcus thermophilus/virología , Factores de Tiempo
11.
Nucleic Acids Res ; 50(21): 12558-12577, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36464236

RESUMEN

The PglZ family of proteins belongs to the alkaline phosphatase superfamily, which consists of metallohydrolases with limited sequence identity but similar metal-coordination architectures in otherwise divergent active sites. Proteins with a well-defined PglZ domain are ubiquitous among prokaryotes as essential components of BREX phage defence systems and two-component systems (TCSs). Whereas other members of the alkaline phosphatase superfamily are well characterized, the activity, structure and biological function of PglZ family proteins remain unclear. We therefore investigated the structure and function of PorX, an orphan response regulator of the Porphyromonas gingivalis TCS containing a putative PglZ effector domain. The crystal structure of PorX revealed a canonical receiver domain, a helical bundle, and an unprecedented PglZ domain, similar to the general organization of the phylogenetically related BREX-PglZ proteins. The PglZ domain of PorX features an active site cleft suitable for large substrates. An extensive search for substrates revealed that PorX is a phosphodiesterase that acts on cyclic and linear oligonucleotides, including signalling molecules such as cyclic oligoadenylates. These results, combined with mutagenesis, biophysical and enzymatic analysis, suggest that PorX coordinates oligonucleotide signalling pathways and indirectly regulates gene expression to control the secretion of virulence factors.


Asunto(s)
Proteínas Bacterianas , Factores de Virulencia , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Oligonucleótidos , Fosfatasa Alcalina , Expresión Génica
12.
Mol Cell ; 56(4): 506-17, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25458845

RESUMEN

Immunity against viruses and plasmids provided by CRISPR-Cas systems relies on a ribonucleoprotein effector complex that triggers the degradation of invasive nucleic acids (NA). Effector complexes of type I (Cascade) and II (Cas9-dual RNA) target foreign DNA. Intriguingly, the genetic evidence suggests that the type III-A Csm complex targets DNA, whereas biochemical data show that the type III-B Cmr complex cleaves RNA. Here we aimed to investigate NA specificity and mechanism of CRISPR interference for the Streptococcus thermophilus Csm (III-A) complex (StCsm). When expressed in Escherichia coli, two complexes of different stoichiometry copurified with 40 and 72 nt crRNA species, respectively. Both complexes targeted RNA and generated multiple cuts at 6 nt intervals. The Csm3 protein, present in multiple copies in both Csm complexes, acts as endoribonuclease. In the heterologous E. coli host, StCsm restricts MS2 RNA phage in a Csm3 nuclease-dependent manner. Thus, our results demonstrate that the type III-A StCsm complex guided by crRNA targets RNA and not DNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , División del ARN , Streptococcus thermophilus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Dispersión del Ángulo Pequeño , Streptococcus thermophilus/enzimología , Difracción de Rayos X
13.
Nucleic Acids Res ; 48(16): 9204-9217, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32766806

RESUMEN

The type III CRISPR-Cas systems provide immunity against invading nucleic acids through the coordinated transcription-dependent DNA targeting and cyclic adenylate (cAn)-activated RNA degradation. Here, we show that both these pathways contribute to the Streptococcus thermophilus (St) type III-A CRISPR-Cas immunity. HPLC-MS analysis revealed that in the heterologous Escherichia coli host the StCsm effector complex predominantly produces cA5 and cA6. cA6 acts as a signaling molecule that binds to the CARF domain of StCsm6 to activate non-specific RNA degradation by the HEPN domain. By dissecting StCsm6 domains we demonstrate that both CARF and HEPN domains act as ring nucleases that degrade cAns to switch signaling off. CARF ring nuclease converts cA6 to linear A6>p and to the final A3>p product. HEPN domain, which typically degrades RNA, also shows ring nuclease activity and indiscriminately degrades cA6 or other cAns down to A>p. We propose that concerted action of both ring nucleases enables self-regulation of the RNase activity in the HEPN domain and eliminates all cAn secondary messengers in the cell when viral infection is combated by a coordinated action of Csm effector and the cA6-activated Csm6 ribonuclease.


Asunto(s)
Sistemas CRISPR-Cas/genética , Inmunidad/genética , Streptococcus thermophilus/genética , Transcripción Genética/genética , Cromatografía Líquida de Alta Presión , Endonucleasas/genética , Escherichia coli/genética , Escherichia coli/inmunología , Dominios Proteicos/genética , Estabilidad del ARN/genética , Estabilidad del ARN/inmunología , Ribonucleasas/genética , Transducción de Señal/genética , Streptococcus thermophilus/inmunología , Transcripción Genética/inmunología
14.
Nucleic Acids Res ; 48(16): 8828-8847, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32735657

RESUMEN

CRISPR-associated Rossmann Fold (CARF) and SMODS-associated and fused to various effector domains (SAVED) are key components of cyclic oligonucleotide-based antiphage signaling systems (CBASS) that sense cyclic oligonucleotides and transmit the signal to an effector inducing cell dormancy or death. Most of the CARFs are components of a CBASS built into type III CRISPR-Cas systems, where the CARF domain binds cyclic oligoA (cOA) synthesized by Cas10 polymerase-cyclase and allosterically activates the effector, typically a promiscuous ribonuclease. Additionally, this signaling pathway includes a ring nuclease, often also a CARF domain (either the sensor itself or a specialized enzyme) that cleaves cOA and mitigates dormancy or death induction. We present a comprehensive census of CARF and SAVED domains in bacteria and archaea, and their sequence- and structure-based classification. There are 10 major families of CARF domains and multiple smaller groups that differ in structural features, association with distinct effectors, and presence or absence of the ring nuclease activity. By comparative genome analysis, we predict specific functions of CARF and SAVED domains and partition the CARF domains into those with both sensor and ring nuclease functions, and sensor-only ones. Several families of ring nucleases functionally associated with sensor-only CARF domains are also predicted.


Asunto(s)
Archaea/genética , Proteínas Arqueales/genética , Bacterias/genética , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Dominios Proteicos , Archaea/enzimología , Proteínas Arqueales/química , Bacterias/enzimología , Proteínas Bacterianas/química , Evolución Molecular
15.
Nucleic Acids Res ; 48(12): 6811-6823, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32496535

RESUMEN

A key aim in exploiting CRISPR-Cas is gRNA engineering to introduce additional functionalities, ranging from individual nucleotide changes that increase efficiency of on-target binding to the inclusion of larger functional RNA aptamers or ribonucleoproteins (RNPs). Cas9-gRNA interactions are crucial for complex assembly, but several distinct regions of the gRNA are amenable to modification. We used in vitro ensemble and single-molecule assays to assess the impact of gRNA structural alterations on RNP complex formation, R-loop dynamics, and endonuclease activity. Our results indicate that RNP formation was unaffected by any of our modifications. R-loop formation and DNA cleavage activity were also essentially unaffected by modification of the Upper Stem, first Hairpin and 3' end. In contrast, we found that 5' additions of only two or three nucleotides could reduce R-loop formation and cleavage activity of the RuvC domain relative to a single nucleotide addition. Such modifications are a common by-product of in vitro transcribed gRNA. We also observed that addition of a 20 nt RNA hairpin to the 5' end of a gRNA still supported RNP formation but produced a stable ∼9 bp R-loop that could not activate DNA cleavage. Consideration of these observations will assist in successful gRNA design.


Asunto(s)
Sistemas CRISPR-Cas/genética , División del ADN , Estructuras R-Loop/genética , ARN Guía de Kinetoplastida/genética , Aptámeros de Nucleótidos/genética , Edición Génica , Conformación de Ácido Nucleico , ARN Guía de Kinetoplastida/ultraestructura , Ribonucleoproteínas/genética , Ribonucleoproteínas/ultraestructura , Imagen Individual de Molécula , Streptococcus pyogenes/genética
16.
Nucleic Acids Res ; 48(9): 5016-5023, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32246713

RESUMEN

In recent years, CRISPR-associated (Cas) nucleases have revolutionized the genome editing field. Being guided by an RNA to cleave double-stranded (ds) DNA targets near a short sequence termed a protospacer adjacent motif (PAM), Cas9 and Cas12 offer unprecedented flexibility, however, more compact versions would simplify delivery and extend application. Here, we present a collection of 10 exceptionally compact (422-603 amino acids) CRISPR-Cas12f nucleases that recognize and cleave dsDNA in a PAM dependent manner. Categorized as class 2 type V-F, they originate from the previously identified Cas14 family and distantly related type V-U3 Cas proteins found in bacteria. Using biochemical methods, we demonstrate that a 5' T- or C-rich PAM sequence triggers dsDNA target cleavage. Based on this discovery, we evaluated whether they can protect against invading dsDNA in Escherichia coli and find that some but not all can. Altogether, our findings show that miniature Cas12f nucleases can protect against invading dsDNA like much larger class 2 CRISPR effectors and have the potential to be harnessed as programmable nucleases for genome editing.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , División del ADN , Escherichia coli/genética , Edición Génica , Motivos de Nucleótidos , Plásmidos/genética
17.
Nucleic Acids Res ; 47(2): 997-1010, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30445642

RESUMEN

Restriction endonucleases (REs) of the CCGG-family recognize a set of 4-8 bp target sequences that share a common CCGG or CCNGG core and possess PD…D/ExK nuclease fold. REs that interact with 5 bp sequence 5'-CCNGG flip the central N nucleotides and 'compress' the bound DNA to stack the inner base pairs to mimic the CCGG sequence. PfoI belongs to the CCGG-family and cleaves the 7 bp sequence 5'-T|CCNGGA ("|" designates cleavage position). We present here crystal structures of PfoI in free and DNA-bound forms that show unique active site arrangement and mechanism of sequence recognition. Structures and mutagenesis indicate that PfoI features a permuted E…ExD…K active site that differs from the consensus motif characteristic to other family members. Although PfoI also flips the central N nucleotides of the target sequence it does not 'compress' the bound DNA. Instead, PfoI induces a drastic change in DNA backbone conformation that shortens the distance between scissile phosphates to match that in the unperturbed CCGG sequence. Our data demonstrate the diversity and versatility of structural mechanisms employed by restriction enzymes for recognition of related DNA sequences.


Asunto(s)
ADN/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , División del ADN , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Modelos Moleculares , Mutación , Nucleótidos/química , Unión Proteica , Conformación Proteica , Multimerización de Proteína
18.
Nat Chem Biol ; 19(3): 261-262, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36797404
19.
EMBO Rep ; 19(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29891635

RESUMEN

CRISPR-Cas systems constitute an adaptive immune system that provides acquired resistance against phages and plasmids in prokaryotes. Upon invasion of foreign nucleic acids, some cells integrate short fragments of foreign DNA as spacers into the CRISPR locus to memorize the invaders and acquire resistance in the subsequent round of infection. This immunization step called adaptation is the least understood part of the CRISPR-Cas immunity. We have focused here on the adaptation stage of Streptococcus thermophilus DGCC7710 type I-E CRISPR4-Cas (St4) system. Cas1 and Cas2 proteins conserved in nearly all CRISPR-Cas systems are required for spacer acquisition. The St4 CRISPR-Cas system is unique because the Cas2 protein is fused to an additional DnaQ exonuclease domain. Here, we demonstrate that St4 Cas1 and Cas2-DnaQ form a multimeric complex, which is capable of integrating DNA duplexes with 3'-overhangs (protospacers) in vitro We further show that the DnaQ domain of Cas2 functions as a 3'-5'-exonuclease that processes 3'-overhangs of the protospacer to promote integration.


Asunto(s)
Inmunidad Adaptativa/genética , Sistemas CRISPR-Cas/genética , ADN Intergénico/genética , Streptococcus thermophilus/genética , Proteínas Bacterianas/genética , ADN Polimerasa III/genética , Dominios Proteicos/genética , Streptococcus thermophilus/inmunología
20.
Nucleic Acids Res ; 46(8): 4316-4324, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29660015

RESUMEN

Arabidopsis thaliana requires a prolonged period of cold exposure during winter to initiate flowering in a process termed vernalization. Exposure to cold induces epigenetic silencing of the FLOWERING LOCUS C (FLC) gene by Polycomb group (PcG) proteins. A key role in this epigenetic switch is played by transcriptional repressors VAL1 and VAL2, which specifically recognize Sph/RY DNA sequences within FLC via B3 DNA binding domains, and mediate recruitment of PcG silencing machinery. To understand the structural mechanism of site-specific DNA recognition by VAL1, we have solved the crystal structure of VAL1 B3 domain (VAL1-B3) bound to a 12 bp oligoduplex containing the canonical Sph/RY DNA sequence 5'-CATGCA-3'/5'-TGCATG-3'. We find that VAL1-B3 makes H-bonds and van der Waals contacts to DNA bases of all six positions of the canonical Sph/RY element. In agreement with the structure, in vitro DNA binding studies show that VAL1-B3 does not tolerate substitutions at any position of the 5'-TGCATG-3' sequence. The VAL1-B3-DNA structure presented here provides a structural model for understanding the specificity of plant B3 domains interacting with the Sph/RY and other DNA sequences.


Asunto(s)
Proteínas de Arabidopsis/química , ADN de Plantas/química , Proteínas Represoras/química , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , ADN de Plantas/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA