Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(3): 031101, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34328770

RESUMEN

Scalar fields coupled to the Gauss-Bonnet invariant can undergo a tachyonic instability, leading to spontaneous scalarization of black holes. Studies of this effect have so far been restricted to single black hole spacetimes. We present the first results on dynamical scalarization in head-on collisions and quasicircular inspirals of black hole binaries with numerical relativity simulations. We show that black hole binaries can either form a scalarized remnant or dynamically descalarize by shedding off its initial scalar hair. The observational implications of these findings are discussed.

2.
Phys Rev Lett ; 126(18): 181101, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34018776

RESUMEN

The Neutron Star Interior Composition Explorer (NICER) recently measured the mass and equatorial radius of the isolated neutron star PSR J0030+0451. We use these measurements to infer the moment of inertia, the quadrupole moment, and the surface eccentricity of an isolated neutron star for the first time, using relations between these quantities that are insensitive to the unknown equation of state of supranuclear matter. We also use these results to forecast the moment of inertia of neutron star A in the double pulsar binary J0737-3039, a quantity anticipated to be directly measured in the coming decade with radio observations. Combining this information with the measurement of the tidal Love number with LIGO/Virgo observations, we propose and implement the first theory-agnostic and equation-of-state-insensitive test of general relativity. Specializing these constraints to a particular modified theory, we find that consistency with general relativity places the most stringent constraint on gravitational parity violation to date, surpassing all other previously reported bounds by 7 orders of magnitude and opens the path for a future test of general relativity with multimessenger neutron star observations.

3.
Phys Rev Lett ; 126(24): 241104, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34213936

RESUMEN

The metric of a spacetime can be greatly simplified if the spacetime is circular. We prove that in generic effective theories of gravity, the spacetime of a stationary, axisymmetric, and asymptotically flat solution must be circular if the solution can be obtained perturbatively from a solution in the general relativity limit. This result applies to a broad class of gravitational theories that include arbitrary scalars and vectors in their light sector, so long as their nonstandard kinetic terms and nonmininal couplings to gravity are treated perturbatively.

4.
Phys Rev Lett ; 126(1): 011103, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33480792

RESUMEN

It was recently shown that a scalar field suitably coupled to the Gauss-Bonnet invariant G can undergo a spin-induced linear tachyonic instability near a Kerr black hole. This instability appears only once the dimensionless spin j is sufficiently large, that is, j≳0.5. A tachyonic instability is the hallmark of spontaneous scalarization. Focusing, for illustrative purposes, on a class of theories that do exhibit this instability, we show that stationary, rotating black hole solutions do indeed have scalar hair once the spin-induced instability threshold is exceeded, while black holes that lie below the threshold are described by the Kerr solution. Our results provide strong support for spin-induced black hole scalarization.

6.
Phys Rev Lett ; 123(19): 191101, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31765188

RESUMEN

Gravitational-wave astronomy offers not only new vistas into the realm of astrophysics, but it also opens an avenue for probing, for the first time, general relativity in its strong-field, nonlinear, and dynamical regime, where the theory's predictions manifest themselves in their full glory. We present a study of whether the gravitational-wave events detected so far by the LIGO-Virgo scientific collaborations can be used to probe higher-curvature corrections to general relativity. In particular, we focus on two examples: Einstein-dilaton-Gauss-Bonnet and dynamical Chern-Simons gravity. We find that the two events with a low-mass m≈7 M_{⊙} BH (GW151226 and GW170608) place stringent constraints on Einstein-dilaton-Gauss-Bonnet gravity, α_{EDGB}^{1/2}≲5.6 km, whereas dynamical Chern-Simons gravity remains unconstrained by the gravitational-wave observations analyzed.

7.
Phys Rev Lett ; 120(13): 131104, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694214

RESUMEN

We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA