Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Proteomics ; 21(1): 47, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961380

RESUMEN

Amyloidosis is a disease characterized by local and systemic extracellular deposition of amyloid protein fibrils where its excessive accumulation in tissues and resistance to degradation can lead to organ failure. Diagnosis is challenging because of approximately 36 different amyloid protein subtypes. Imaging methods like immunohistochemistry and the use of Congo red staining of amyloid proteins for laser capture microdissection combined with liquid chromatography tandem mass spectrometry (LMD/LC-MS/MS) are two diagnostic methods currently used depending on the expertise of the pathology laboratory. Here, we demonstrate a streamlined in situ amyloid peptide spatial mapping by Matrix Assisted Laser Desorption Ionization-Mass Spectrometry Imaging (MALDI-MSI) combined with Trapped Ion Mobility Spectrometry for potential transthyretin (ATTR) amyloidosis subtyping. While we utilized the standard LMD/LC-MS/MS workflow for amyloid subtyping of 31 specimens from different organs, we also evaluated the potential introduction in the MS workflow variations in data acquisition parameters like dynamic exclusion, or testing Data Dependent Acquisition combined with High-Field Asymmetric Waveform Ion Mobility Spectrometry (DDA FAIMS) versus Data Independent Acquisition (DIA) for enhanced amyloid protein identification at shorter acquisition times. We also demonstrate the use of Mascot's Error Tolerant Search and PEAKS de novo sequencing for the sequence variant analysis of amyloidosis specimens.

2.
Mol Ther ; 27(8): 1495-1506, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31208914

RESUMEN

Neuronopathic glycosphingolipidoses are a sub-group of lysosomal storage disorders for which there are presently no effective therapies. Here, we evaluated the potential of substrate reduction therapy (SRT) using an inhibitor of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide (GL1) and related glycosphingolipids. The substrates that accumulate in Sandhoff disease (e.g., ganglioside GM2 and its nonacylated derivative, lyso-GM2) are distal to the drug target, GCS. Treatment of Sandhoff mice with a GCS inhibitor that has demonstrated CNS access (Genz-682452) reduced the accumulation of GL1 and GM2, as well as a variety of disease-associated substrates in the liver and brain. Concomitant with these effects was a significant decrease in the expression of CD68 and glycoprotein non-metastatic melanoma B protein (Gpnmb) in the brain, indicating a reduction in microgliosis in the treated mice. Moreover, using in vivo imaging, we showed that the monocytic biomarker translocator protein (TSPO), which was elevated in Sandhoff mice, was normalized following Genz-682452 treatment. These positive effects translated in turn into a delay (∼28 days) in loss of motor function and coordination, as measured by rotarod latency, and a significant increase in longevity (∼17.5%). Together, these results support the development of SRT for the treatment of gangliosidoses, particularly in patients with residual enzyme activity.


Asunto(s)
Carbamatos/farmacología , Inhibidores Enzimáticos/farmacología , Glucosiltransferasas/antagonistas & inhibidores , Quinuclidinas/farmacología , Enfermedad de Sandhoff/enzimología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Ligandos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Espectrometría de Masas , Ratones , Ratones Noqueados , Imagen Molecular , Receptores de GABA/metabolismo , Enfermedad de Sandhoff/diagnóstico , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , Esfingolípidos/metabolismo , Cadena beta de beta-Hexosaminidasa/genética , Cadena beta de beta-Hexosaminidasa/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(29): 10696-701, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002508

RESUMEN

The host defense response critically depends on the production of leukocytes by the marrow and the controlled delivery of these cells to relevant sites of inflammation/infection. The cytokine granulocyte-colony stimulating factor (G-CSF) is commonly used therapeutically to augment neutrophil recovery following chemo/radiation therapy for malignancy, thereby decreasing infection risk. Although best known as a potent inducer of myelopoiesis, we previously reported that G-CSF also promotes the delivery of leukocytes to sites of inflammation by stimulating expression of potent E-selectin ligands, including an uncharacterized ∼65-kDa glycoprotein. To identify this ligand, we performed integrated biochemical analysis and mass spectrometry studies of G-CSF-treated primary human myeloid cells. Our studies show that this novel E-selectin ligand is a glycoform of the heavy chain component of the enzyme myeloperoxidase (MPO), a well-known lysosomal peroxidase. This specialized MPO glycovariant, referred to as "MPO-E-selectin ligand" (MPO-EL), is expressed on circulating G-CSF-mobilized leukocytes and is naturally expressed on blood myeloid cells in patients with febrile leukocytosis. In vitro biochemical studies show that G-CSF programs MPO-EL expression on human blood leukocytes and marrow myeloid cells via induction of N-linked sialofucosylations on MPO, with concomitant cell surface display of the molecule. MPO-EL is catalytically active and mediates angiotoxicity on human endothelial cells that express E-selectin. These findings thus define a G-CSF effect on MPO chemical biology that endows unsuspected functional versatility upon this enzyme, unveiling new perspectives on the biology of G-CSF and MPO, and on the role of E-selectin receptor/ligand interactions in leukocyte migration and vascular pathology.


Asunto(s)
Selectina E/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Mutación/genética , Células Mieloides/metabolismo , Peroxidasa/metabolismo , Polisacáridos/metabolismo , Animales , Biocatálisis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Fucosa/metabolismo , Humanos , Ligandos , Ratones , Peso Molecular , Células Mieloides/efectos de los fármacos , Ácido N-Acetilneuramínico/metabolismo , Unión Proteica/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
4.
iScience ; 24(5): 102457, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34013171

RESUMEN

Translocator protein (TSPO, 18 kDa) levels increase in parallel with the evolution of simple steatosis (SS) to nonalcoholic steatohepatitis (NASH) in nonalcoholic fatty liver disease (NAFLD). However, TSPO function in SS and NASH is unknown. Loss of TSPO in hepatocytes in vitro downregulated acetyl-CoA acetyltransferase 2 and increased free cholesterol (FC). FC accumulation induced endoplasmic reticulum stress via IRE1A and protein kinase RNA-like ER kinase/ATF4/CCAAT-enhancer-binding protein homologous protein pathways and autophagy. TSPO deficiency activated cellular adaptive antioxidant protection; this adaptation was lost upon excessive FC accumulation. A TSPO ligand 19-Atriol blocked cholesterol binding and recapitulated many of the alterations seen in TSPO-deficient cells. These data suggest that TSPO deficiency accelerated the progression of SS. In NASH, however, loss of TSPO ameliorated liver fibrosis through downregulation of bile acid synthesis by reducing CYP7A1 and CYP27A1 levels and increasing farnesoid X receptor expression. These studies indicate a dynamic and complex role for TSPO in the evolution of NAFLD.

5.
Cell ; 129(1): 123-34, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17418791

RESUMEN

The number of N-glycans (n) is a distinct feature of each glycoprotein sequence and cooperates with the physical properties of the Golgi N-glycan-branching pathway to regulate surface glycoprotein levels. The Golgi pathway is ultrasensitive to hexosamine flux for the production of tri- and tetra-antennary N-glycans, which bind to galectins and form a molecular lattice that opposes glycoprotein endocytosis. Glycoproteins with few N-glycans (e.g., TbetaR, CTLA-4, and GLUT4) exhibit enhanced cell-surface expression with switch-like responses to increasing hexosamine concentration, whereas glycoproteins with high numbers of N-glycans (e.g., EGFR, IGFR, FGFR, and PDGFR) exhibit hyperbolic responses. Computational and experimental data reveal that these features allow nutrient flux stimulated by growth-promoting high-n receptors to drive arrest/differentiation programs by increasing surface levels of low-n glycoproteins. We have identified a mechanism for metabolic regulation of cellular transition between growth and arrest in mammals arising from apparent coevolution of N-glycan number and branching.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Antígenos CD , Antígenos de Diferenciación , Antígeno CTLA-4 , Línea Celular , Línea Celular Tumoral , Endocitosis , Glicosilación , Aparato de Golgi/metabolismo , Hexosaminas/metabolismo , Humanos , Cinética , Ratones , Ratones Transgénicos , Modelos Biológicos , Polisacáridos/química , Proteínas Tirosina Quinasas Receptoras/química , Linfocitos T/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo
6.
J Biol Chem ; 281(18): 12776-85, 2006 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16522637

RESUMEN

UDP-GlcNAc:alpha3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (encoded by Mgat1) controls the synthesis of hybrid, complex, and paucimannose N-glycans. Mice make hybrid and complex N-glycans but little or no paucimannose N-glycans. In contrast, Drosophila melanogaster and Caenorhabditis elegans make paucimannose N-glycans but little or no hybrid or complex N-glycans. To determine the functional requirement for beta1,2-N-acetylglucosaminyltransferase I in Drosophila, we generated null mutations by imprecise excision of a nearby transposable element. Extracts from Mgat1(1)/Mgat1(1) null mutants showed no beta1,2-N-acetylglucosaminyltransferase I enzyme activity. Moreover, mass spectrometric analysis of these extracts showed dramatic changes in N-glycans compatible with lack of beta1,2-N-acetylglucosaminyltransferase I activity. Interestingly, Mgat1(1)/Mgat1(1) null mutants are viable but exhibit pronounced defects in adult locomotory activity when compared with Mgat1(1)/CyO-GFP heterozygotes or wild type flies. In addition, in null mutants males are sterile and have a severely reduced mean and maximum life span. Microscopic examination of mutant adult fly brains showed the presence of fused beta lobes. The removal of both maternal and zygotic Mgat1 also gave rise to embryos that no longer express the horseradish peroxidase antigen within the central nervous system. Taken together, the data indicate that beta1,2-N-acetylglucosaminyltransferase I-dependent N-glycans are required for locomotory activity, life span, and brain development in Drosophila.


Asunto(s)
Mutación , N-Acetilglucosaminiltransferasas/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Conformación de Carbohidratos , Drosophila melanogaster , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Heterocigoto , Espectrometría de Masas , Ratones , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA