Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Sci Technol ; 58(20): 8748-8759, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38709019

RESUMEN

Sea spray aerosols (SSA) greatly affect the climate system by scattering solar radiation and acting as seeds for cloud droplet formation. The ecosystems in the Arctic Ocean are rapidly changing due to global warming, and the effects these changes have on the generation of SSA, and thereby clouds and fog formation in this region, are unknown. During the ship-based Arctic Century Expedition, we examined the dependency of forced SSA production on the biogeochemical characteristics of seawater using an on-board temperature-controlled aerosol generation chamber with a plunging jet system. Our results indicate that mainly seawater salinity and organic content influence the production and size distribution of SSA. However, we observed a 2-fold higher SSA production from waters with similar salinity collected north of 81°N compared to samples collected south of this latitude. This variability was not explained by phytoplankton and bacterial abundances or Chlorophyll-a concentration but by the presence of glucose in seawater. The synergic action of sea salt (essential component) and glucose or glucose-rich saccharides (enhancer) accounts for >80% of SSA predictability throughout the cruise. Our results suggest that besides wind speed and salinity, SSA production in Arctic waters is also affected by specific organics released by the microbiota.


Asunto(s)
Aerosoles , Glucosa , Salinidad , Agua de Mar , Regiones Árticas , Agua de Mar/química , Glucosa/metabolismo , Fitoplancton
2.
Environ Sci Technol ; 54(13): 7807-7817, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32501707

RESUMEN

We present shipborne measurements of size-resolved concentrations of aerosol components across ocean waters next to the Antarctic Peninsula, South Orkney Islands, and South Georgia Island, evidencing aerosol features associated with distinct eco-regions. Nonmethanesulfonic acid Water-Soluble Organic Matter (WSOM) represented 6-8% and 11-22% of the aerosol PM1 mass originated in open ocean (OO) and sea ice (SI) regions, respectively. Other major components included sea salt (86-88% OO, 24-27% SI), non sea salt sulfate (3-4% OO, 35-40% SI), and MSA (1-2% OO, 11-12% SI). The chemical composition of WSOM encompasses secondary organic components with diverse behaviors: while alkylamine concentrations were higher in SI air masses, oxalic acid showed higher concentrations in the open ocean air. Our online single-particle mass spectrometry data exclude a widespread source from sea bird colonies, while the secondary production of oxalic acid and sulfur-containing organic species via cloud processing is suggested. We claim that the potential impact of the sympagic planktonic ecosystem on aerosol composition has been overlooked in past studies, and multiple eco-regions act as distinct aerosol sources around Antarctica.


Asunto(s)
Contaminantes Atmosféricos , Ecosistema , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Regiones Antárticas , Monitoreo del Ambiente , Sulfatos
3.
Environ Sci Technol ; 53(15): 8621-8630, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31310508

RESUMEN

The sources of primary and secondary aerosols in the Arctic are still poorly known. A number of surface seawater samples-with varying degrees of Arctic riverine and sea ice influences-were used in a sea spray generation chamber to test them for their potential to produce sea spray aerosols (SSA) and cloud condensation nuclei (CCN). Our interdisciplinary data showed that both sea salt and organic matter (OM) significantly influenced the SSA production. The number concentration of SSA in the coastal samples was negatively correlated with salinity and positively correlated with a number of OM tracers, including dissolved and chromophoric organic carbon (DOC, CDOM), marine microgels and chlorophyll a (Chl-a) but not for viral and bacterial abundances; indicating that OM of riverine origin enhances primary aerosol production. When all samples were considered, transparent exopolymer particles (TEP) were found to be the best indicator correlating positively with the ratio number concentration of SSA/salinity. CCN efficiency was not observed to differ between the SSA from the various samples, despite differences in organic characteristics. It is suggested that the large amount of freshwater from river runoff have a substantial impact on primary aerosols production mechanisms, possibly affecting the cloud radiative forcing.


Asunto(s)
Clorofila A , Agua de Mar , Aerosoles , Regiones Árticas , Ríos
4.
Environ Sci Technol ; 50(24): 13361-13370, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993080

RESUMEN

Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m3 (mol quanta)-1). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m3 (mol quanta)-1. The largest AQY(330), up to 34 m3 (mol quanta)-1), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d-1), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.


Asunto(s)
Fotoblanqueo , Fotólisis , Nitratos , Océanos y Mares
5.
Proc Natl Acad Sci U S A ; 109(44): 18000-5, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23071304

RESUMEN

Symbiotic relationships are widespread in nature and are fundamental for ecosystem functioning and the evolution of biodiversity. In marine environments, photosymbiosis with microalgae is best known for sustaining benthic coral reef ecosystems. Despite the importance of oceanic microbiota in global ecology and biogeochemical cycles, symbioses are poorly characterized in open ocean plankton. Here, we describe a widespread symbiotic association between Acantharia biomineralizing microorganisms that are abundant grazers in plankton communities, and members of the haptophyte genus Phaeocystis that are cosmopolitan bloom-forming microalgae. Cophylogenetic analyses demonstrate that symbiont biogeography, rather than host taxonomy, is the main determinant of the association. Molecular dating places the origin of this photosymbiosis in the Jurassic (ca. 175 Mya), a period of accentuated marine oligotrophy. Measurements of intracellular dimethylated sulfur indicate that the host likely profits from antioxidant protection provided by the symbionts as an adaptation to life in transparent oligotrophic surface waters. In contrast to terrestrial and marine symbioses characterized to date, the symbiont reported in this association is extremely abundant and ecologically active in its free-living phase. In the vast and barren open ocean, partnership with photosymbionts that have extensive free-living populations is likely an advantageous strategy for hosts that rely on such interactions. Discovery of the Acantharia-Phaeocystis association contrasts with the widely held view that symbionts are specialized organisms that are rare and ecologically passive outside the host.


Asunto(s)
Plancton/fisiología , Simbiosis , Biodiversidad , Datos de Secuencia Molecular , Océanos y Mares , Plancton/clasificación
6.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38995932

RESUMEN

Marine planktonic predator-prey interactions occur in microscale seascapes, where diffusing chemicals may act either as chemotactic cues that enhance or arrest predation, or as elemental resources that are complementary to prey ingestion. The phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) and its degradation products dimethylsulfide (DMS) and acrylate are pervasive compounds with high chemotactic potential, but there is a longstanding controversy over whether they act as grazing enhancers or deterrents. Here, we investigated the chemotactic responses of three herbivorous dinoflagellates to point-sourced, microscale gradients of dissolved DMSP, DMS, and acrylate. We found no evidence for acrylate being a chemotactic repellent and observed a weak attractor role of DMS. DMSP behaved as a strong chemoattractor whose potential for grazing facilitation through effects on swimming patterns and aggregation depends on the grazer's feeding mode and ability to incorporate DMSP. Our study reveals that predation models will fail to predict grazing impacts unless they incorporate chemotaxis-driven searching and finding of prey.


Asunto(s)
Quimiotaxis , Dinoflagelados , Herbivoria , Compuestos de Sulfonio , Compuestos de Sulfonio/metabolismo , Dinoflagelados/fisiología , Acrilatos , Sulfuros/metabolismo , Sulfuros/farmacología , Fitoplancton/fisiología , Animales , Conducta Predatoria , Cadena Alimentaria
7.
Nat Commun ; 15(1): 2571, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519467

RESUMEN

Isoprene is a key trace component of the atmosphere emitted by vegetation and other organisms. It is highly reactive and can impact atmospheric composition and climate by affecting the greenhouse gases ozone and methane and secondary organic aerosol formation. Marine fluxes are poorly constrained due to the paucity of long-term measurements; this in turn limits our understanding of isoprene cycling in the ocean. Here we present the analysis of isoprene concentrations in the atmosphere measured across the Southern Ocean over 4 months in the summertime. Some of the highest concentrations ( >500 ppt) originated from the marginal ice zone in the Ross and Amundsen seas, indicating the marginal ice zone is a significant source of isoprene at high latitudes. Using the United Kingdom Earth System Model we show that current estimates of sea-to-air isoprene fluxes underestimate observed isoprene by a factor >20. A daytime source of isoprene is required to reconcile models with observations. The model presented here suggests such an increase in isoprene emissions would lead to >8% decrease in the hydroxyl radical in regions of the Southern Ocean, with implications for our understanding of atmospheric oxidation and composition in remote environments, often used as proxies for the pre-industrial atmosphere.

8.
Sci Adv ; 9(4): eadd9031, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36706174

RESUMEN

Reactive trace gas emissions from the polar oceans are poorly characterized, even though their effects on atmospheric chemistry and aerosol formation are crucial for assessing current and preindustrial aerosol forcing on climate. Here, we present seawater and atmospheric measurements of benzene and toluene, two gases typically associated with pollution, in the remote Southern Ocean and the Arctic marginal ice zone. Their distribution suggests a marine biogenic source. Calculated emission fluxes were 0.023 ± 0.030 (benzene) and 0.039 ± 0.036 (toluene) and 0.023 ± 0.028 (benzene) and 0.034 ± 0.041 (toluene) µmol m-2 day-1 for the Southern Ocean and the Arctic, respectively. Including these average emissions in a chemistry-climate model increased secondary organic aerosol mass concentrations only by 0.1% over the Arctic but by 7.7% over the Southern Ocean, with transient episodes of up to 77.3%. Climate models should consider the hitherto overlooked emissions of benzene and toluene from the polar oceans.

9.
Nat Commun ; 14(1): 510, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720878

RESUMEN

Algal blooms are hotspots of marine primary production and play central roles in microbial ecology and global elemental cycling. Upon demise of the bloom, organic carbon is partly respired and partly transferred to either higher trophic levels, bacterial biomass production or sinking. Viral infection can lead to bloom termination, but its impact on the fate of carbon remains largely unquantified. Here, we characterize the interplay between viral infection and the composition of a bloom-associated microbiome and consequently the evolving biogeochemical landscape, by conducting a large-scale mesocosm experiment where we monitor seven induced coccolithophore blooms. The blooms show different degrees of viral infection and reveal that only high levels of viral infection are followed by significant shifts in the composition of free-living bacterial and eukaryotic assemblages. Intriguingly, upon viral infection the biomass of eukaryotic heterotrophs (thraustochytrids) rivals that of bacteria as potential recyclers of organic matter. By combining modeling and quantification of active viral infection at a single-cell resolution, we estimate that viral infection causes a 2-4 fold increase in per-cell rates of extracellular carbon release in the form of acidic polysaccharides and particulate inorganic carbon, two major contributors to carbon sinking into the deep ocean. These results reveal the impact of viral infection on the fate of carbon through microbial recyclers of organic matter in large-scale coccolithophore blooms.


Asunto(s)
Eucariontes , Virosis , Humanos , Células Eucariotas , Bacterias , Carbono
10.
Nat Commun ; 14(1): 8080, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057294

RESUMEN

The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While many bacteria are chemotactic towards small metabolites, marine organic matter is predominantly composed of large molecules and polymers. Yet, the signalling role of these large molecules is largely unknown. Using in situ and laboratory-based chemotaxis assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharides laminarin and alginate. Unexpectedly, these polysaccharides elicited stronger chemoattraction than their oligo- and monosaccharide constituents. Furthermore, chemotaxis towards laminarin was strongly enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. We demonstrate that marine bacteria are capable of strong chemotaxis towards large soluble polysaccharides and uncover a new ecological role for DMSP in enhancing this attraction. These navigation behaviours may contribute to the rapid turnover of polymers in the ocean, with important consequences for marine carbon cycling.


Asunto(s)
Quimiotaxis , Compuestos de Sulfonio , Quimiotaxis/fisiología , Ecosistema , Compuestos de Azufre/metabolismo , Compuestos de Sulfonio/metabolismo , Bacterias/metabolismo , Polisacáridos/metabolismo , Polímeros/metabolismo
11.
Sci Total Environ ; 844: 156921, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35760176

RESUMEN

Phytoplankton-derived organic matter sustains heterotrophic marine life in regions away from terrestrial inputs such as the Southern Ocean. Fluorescence spectroscopy has long been used to characterize the fluorescent organic matter (FOM) pool. However, most studies focus only in the dissolved FOM fraction (FDOM) disregarding the contribution of particles. In order to assess the dynamics and drivers of the dissolved and particulate fractions of FOM, we used a Lagrangian approach to follow the time evolution of phytoplankton proliferations at four different sites in the Southern Ocean and compared the FOM in filtered and unfiltered seawater aliquots. We found that filtration had little effects on FOM visible spectrum fluorescence intensities, implying that most of this signal was due to dissolved fluorophores. On the other hand, protein-like fluorescence was strongly supressed by filtration, with fluorescence of particles accounting for up to 90 % of the total protein-like FOM. Photobleaching was identified as the main driver of visible FDOM composition, which was better described by indices of phytoplankton photoacclimation than by measurements of the incident solar radiation dose. In contrast, protein-like FOM intensity and fractionation were primarily related to abundance, composition and physiological state of phytoplankton proliferations. The chlorophyll a concentration from non-diatom phytoplankton explained 91 % of the particulate protein-like FOM variability. The proportion of protein-like fluorescence found in the dissolved phase was predicted by the combination of potential viral and grazing pressures, which accounted for 51 and 29 % of its variability, respectively. Our results show that comparing FOM measurements from filtered and unfiltered seawater provides relevant information on the taxonomic composition and cell integrity of phytoplankton communities. A better understanding of the commonly overlooked FOM fractionation process is essential for the implementation of in situ fluorescence sensors and will also help us better understand the processes that govern OM cycling in marine systems.


Asunto(s)
Materia Orgánica Disuelta , Fitoplancton , Clorofila A , Colorantes , Océanos y Mares , Material Particulado/análisis , Agua de Mar
12.
J Geophys Res Atmos ; 126(11): e2021JD034811, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34221783

RESUMEN

In this study, we investigate the occurrence of primary biological aerosol particles (PBAP) over all sectors of the Southern Ocean (SO) based on a 90-day data set collected during the Antarctic Circumnavigation Expedition (ACE) in austral summer 2016-2017. Super-micrometer PBAP (1-16 µm diameter) were measured by a wide band integrated bioaerosol sensor (WIBS-4). Low (3σ) and high (9σ) fluorescence thresholds are used to obtain statistics on fluorescent and hyper-fluorescent PBAP, respectively. Our focus is on data obtained over the pristine ocean, that is, more than 200 km away from land. The results indicate that (hyper-)fluorescent PBAP are correlated to atmospheric variables associated with sea spray aerosol (SSA) particles (wind speed, total super-micrometer aerosol number concentration, chloride and sodium concentrations). This suggests that a main source of PBAP over the SO is SSA. The median percentage contribution of fluorescent and hyper-fluorescent PBAP to super-micrometer SSA was 1.6% and 0.13%, respectively. We demonstrate that the fraction of (hyper-)fluorescent PBAP to total super-micrometer particles positively correlates with concentrations of bacteria and several taxa of pythoplankton measured in seawater, indicating that marine biota concentrations modulate the PBAP source flux. We investigate the fluorescent properties of (hyper-)fluorescent PBAP for several events that occurred near land masses. We find that the fluorescence signal characteristics of particles near land is much more variable than over the pristine ocean. We conclude that the source and concentration of fluorescent PBAP over the open ocean is similar across all sampled sectors of the SO.

13.
Life (Basel) ; 10(7)2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32635627

RESUMEN

We explored how changes of viral abundance and community composition among four contrasting regions in the Southern Ocean relied on physicochemical and microbiological traits. During January-February 2015, we visited areas north and south of the South Orkney Islands (NSO and SSO) characterized by low temperature and salinity and high inorganic nutrient concentration, north of South Georgia Island (NSG) and west of Anvers Island (WA), which have relatively higher temperatures and lower inorganic nutrient concentrations. Surface viral abundance (VA) was highest in NSG (21.50 ± 10.70 × 106 viruses mL-1) and lowest in SSO (2.96 ± 1.48 × 106 viruses mL-1). VA was positively correlated with temperature, prokaryote abundance and prokaryotic heterotrophic production, chlorophyll a, diatoms, haptophytes, fluorescent organic matter, and isoprene concentration, and was negatively correlated with inorganic nutrients (NO3-, SiO42-, PO43-), and dimethyl sulfide (DMS) concentrations. Viral communities determined by randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) were grouped according to the sampling location, being more similar within them than among regions. The first two axes of a canonical correspondence analysis, including physicochemical (temperature, salinity, inorganic nutrients-NO3-, SiO42-, and dimethyl sulfoniopropionate -DMSP- and isoprene concentrations) and microbiological (chlorophyll a, haptophytes and diatom, and prokaryote abundance and prokaryotic heterotrophic production) factors accounted for 62.9% of the variance. The first axis, temperature-related, accounted for 33.8%; the second one, salinity-related, accounted for 29.1%. Thus, different environmental situations likely select different hosts for viruses, leading to distinct viral communities.

14.
Environ Microbiol ; 11(12): 3063-72, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19659553

RESUMEN

A laboratory grazing experiment was conducted with the aim of quantifying the sulfur assimilation by a herbivore protist feeding on a dimethylsulfoniopropionate (DMSP)-containing phytoplankter. When supplied with dissolved (35)S-DMSP, cultures of an axenic strain of the diatom Thalassiosira pseudonana took up 60-95% of the added radioisotope and accumulated it untransformed in the cytoplasm. Radiolabelled diatom cells were offered as prey to the heterotrophic dinoflagellate Oxyrrhis marina. After 32 h in the dark, all the prey had been grazed and digested, leaving only radiolabelled O. marina in the grazing bottles and thus providing an estimate of the percentage of DMSP-sulfur retained by the predator. Subsequent precipitation with cold trichloroacetic acid (TCA) provided the fraction of retained DMSP-S that had been assimilated into the micrograzer macromolecules. In parallel incubations with predator and dissolved (35)S-DMSP only (no prey), O. marina (and their closely associated bacteria) took up the radiolabelled substrate osmotrophically to an activity of 0.04 dpm cell(-1) and assimilated it all into macromolecules. By correcting grazing (35)S-DMSP assimilation for osmotrophic (35)S-DMSP assimilation, and comparing it with the ingested radioisotope, the percentage of ingested DMSP-sulfur retained and assimilated by the predator was determined to be 32 +/- 4%. This is the first study that provides direct evidence that ingestion of a DMSP-containing prey supplies structural sulfur to a herbivore protist and that quantifies this assimilative supply at one-third of ingested DMSP.


Asunto(s)
Dinoflagelados/metabolismo , Compuestos de Sulfonio/metabolismo , Azufre/metabolismo , Diatomeas/metabolismo , Radioisótopos de Azufre/metabolismo , Contaminantes Químicos del Agua/metabolismo
15.
Environ Microbiol Rep ; 11(5): 699-707, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31286686

RESUMEN

The extent of DMSP demethylation has been hypothesized to depend on DMSP availability and bacterial sulfur demand, which might lead to niche differentiation of the demethylating bacterial community. In this study, we determined DMSP concentrations in marine snow and the ambient water over a seasonal cycle and linked DMSP concentrations to the abundance of bacteria harbouring the demethylation dmdA gene in the Adriatic Sea. In marine snow, DMSP concentrations were up to four times higher than in the ambient water and three times higher in marine snow in summer than in winter. The average dmdA:recA gene ratio over the sampling period was 0.40 ± 0.24 in marine snow and 0.48 ± 0.21 in the ambient water. However, at the subclade level, differences in the demethylating bacterial community of marine snow and the ambient water were apparent. Seasonal patterns of potentially demethylating bacteria were best visible at the oligotype level. In the ambient water, the SAR116 and the OM60/NOR5 clade were composed of oligotypes that correlated to high DMSP concentrations, while oligotypes of the Rhodospirillales correlated to low DMSP concentrations. Our results revealed a pronounced seasonal variability and spatial heterogeneity in DMSP concentrations and the associated demethylating bacterial community.


Asunto(s)
Bacterias/clasificación , Desmetilación , Sedimentos Geológicos/microbiología , Consorcios Microbianos , Estaciones del Año , Agua de Mar/microbiología , ADN Bacteriano/genética , Gammaproteobacteria , Océanos y Mares , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Sci Total Environ ; 691: 736-748, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31325871

RESUMEN

Transparent exopolymer particles (TEP) are an abundant class of suspended organic particles, mainly formed by polysaccharides, which play important roles in biogeochemical and ecological processes in the ocean. In this study we investigated horizontal and vertical TEP distributions (within the euphotic layer, including the upper surface) and their short-term variability along with a suite of environmental and biological variables in four distinct regions of the Southern Ocean. TEP concentrations in the surface (4 m) averaged 102.3 ±â€¯40.4 µg XG eq. L-1 and typically decreased with depth. Chlorophyll a (Chl a) concentration was a better predictor of TEP variability across the horizontal (R2 = 0.66, p < 0.001) and vertical (R2 = 0.74, p < 0.001) scales than prokaryotic heterotrophic abundance and production. Incubation experiments further confirmed the main role of phytoplankton as TEP producers. The highest surface TEP concentrations were found north of the South Orkney Islands (144.4 ±â€¯21.7 µg XG eq. L-1), where the phytoplankton was dominated by cryptophytes and haptophytes; however, the highest TEP:Chl a ratios were found south of these islands (153.4 ±â€¯29.8 µg XG eq (µg Chl a)-1, compared to a mean of 79.3 ±â€¯54.9 µg XG eq (µg Chl a)-1 in the whole cruise, in association with haptophyte dominance, proximity of sea ice and high exposure to solar radiation. TEP were generally enriched in the upper surface (10 cm) respect to 4 m, despite a lack of biomass enrichment, suggesting either upward transport by positive buoyancy or bubble scavenging, or higher production at the upper surface by light stress or aggregation. TEP concentrations did not present any significant cyclic diel pattern. Altogether, our results suggest that photobiological stress, sea ice melt and turbulence add to phytoplankton productivity in driving TEP distribution across the Antarctic Peninsula area and Atlantic sector of the Southern Ocean.

17.
Sci Rep ; 9(1): 10613, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31316110

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

18.
Sci Total Environ ; 631-632: 180-190, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29525702

RESUMEN

Transparent Exopolymer Particles (TEPs) are a subclass of organic particles with high impact in biogeochemical and ecological processes, such as the biological carbon pump, air-sea interactions, or the microbial loop. However, the complexity in production and consumption makes TEP dynamics hardly predictable, calling for the need of descriptive studies about the in situ dynamics of these particles. We followed monthly TEP dynamics and combined them with a dataset of environmental variables during three years in a coastal site of the oligotrophic North Western Mediterranean (Blanes Bay). TEP concentration, ranging from 11.3 to 289.1µgXGeqL-1 (average 81.7±11.7µgXGeqL-1), showed recurrent peaks in early summer (June-July). TEP were temporally disconnected from chlorophyll a maxima, that occurred in late winter and early spring (maxima 1.21µgL-1), but they were significantly related to the abundance of specific phytoplankton groups (diatoms and dinoflagellates) and also coincided with periods of low nutrient concentrations. The fraction of particulate organic carbon in the form of TEP (the TEP:POC and TEP:PM ratios) were also highest in early summer, indicating that TEP-enriched particles of low density accumulate in surface waters during stratified periods. We hypothesize that the accumulation of these particles affects the microbial food web by enhancing the activity of specific prokaryotic extracellular enzymes (esterase, ß-glucosidase and alkaline phosphatase) and promoting the abundance of heterotrophic nanoflagellates.

19.
Sci Rep ; 8(1): 13844, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30218089

RESUMEN

Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of 'primary' wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in forming marine clouds remains unclear. Here we report on marine aerosols (PM1) over the Southern Ocean around Antarctica, in terms of their physical, chemical, and cloud droplet activation properties. Two predominant pristine air masses and aerosol populations were encountered: modified continental Antarctic (cAA) comprising predominantly sulphate with minimal sea-salt contribution and maritime Polar (mP) comprising sulphate plus sea-salt. We estimate that in cAA air, 75% of the CCN are activated into cloud droplets while in mP air, 37% are activated into droplets, for corresponding peak supersaturation ranges of 0.37-0.45% and 0.19-0.31%, respectively. When realistic marine boundary layer cloud supersaturations are considered (e.g. ~0.2-0.3%), sea-salt CCN contributed 2-13% of the activated nuclei in the cAA air and 8-51% for the marine air for surface-level wind speed < 16 m s-1. At higher wind speeds, primary marine aerosol can even contribute up to 100% of the activated CCN, for corresponding peak supersaturations as high as 0.32%.


Asunto(s)
Atmósfera/química , Océanos y Mares , Estaciones del Año , Aerosoles , Aire , Regiones Antárticas , Fenómenos Químicos , Viento
20.
Sci Rep ; 7(1): 6047, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28729547

RESUMEN

Climate warming affects the development and distribution of sea ice, but at present the evidence of polar ecosystem feedbacks on climate through changes in the atmosphere is sparse. By means of synergistic atmospheric and oceanic measurements in the Southern Ocean near Antarctica, we present evidence that the microbiota of sea ice and sea ice-influenced ocean are a previously unknown significant source of atmospheric organic nitrogen, including low molecular weight alkyl-amines. Given the keystone role of nitrogen compounds in aerosol formation, growth and neutralization, our findings call for greater chemical and source diversity in the modelling efforts linking the marine ecosystem to aerosol-mediated climate effects in the Southern Ocean.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA