Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(30): e2122309119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858445

RESUMEN

Plants and microbes share common metabolic pathways for producing a range of bioproducts that are potentially foundational to the future bioeconomy. However, in planta accumulation and microbial production of bioproducts have never been systematically compared on an economic basis to identify optimal routes of production. A detailed technoeconomic analysis of four exemplar compounds (4-hydroxybenzoic acid [4-HBA], catechol, muconic acid, and 2-pyrone-4,6-dicarboxylic acid [PDC]) is conducted with the highest reported yields and accumulation rates to identify economically advantaged platforms and breakeven targets for plants and microbes. The results indicate that in planta mass accumulation ranging from 0.1 to 0.3 dry weight % (dwt%) can achieve costs comparable to microbial routes operating at 40 to 55% of maximum theoretical yields. These yields and accumulation rates are sufficient to be cost competitive if the products are sold at market prices consistent with specialty chemicals ($20 to $50/kg). Prices consistent with commodity chemicals will require an order-of-magnitude-greater accumulation rate for plants and/or yields nearing theoretical maxima for microbial production platforms. This comparative analysis revealed that the demonstrated accumulation rates of 4-HBA (3.2 dwt%) and PDC (3.0 dwt%) in engineered plants vastly outperform microbial routes, even if microbial platforms were to reach theoretical maximum yields. Their recovery and sale as part of a lignocellulosic biorefinery could enable biofuel prices to be competitive with petroleum. Muconic acid and catechol, in contrast, are currently more attractive when produced microbially using a sugar feedstock. Ultimately, both platforms can play an important role in replacing fossil-derived products.


Asunto(s)
Bacterias , Productos Biológicos , Biotecnología , Redes y Vías Metabólicas , Plantas , Levaduras , Bacterias/genética , Bacterias/metabolismo , Productos Biológicos/metabolismo , Biotecnología/economía , Biotecnología/tendencias , Catecoles/metabolismo , Parabenos/metabolismo , Plantas/genética , Plantas/metabolismo , Pironas/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo , Levaduras/genética , Levaduras/metabolismo
2.
Metab Eng ; 84: 69-82, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839037

RESUMEN

Sunscreen has been used for thousands of years to protect skin from ultraviolet radiation. However, the use of modern commercial sunscreen containing oxybenzone, ZnO, and TiO2 has raised concerns due to their negative effects on human health and the environment. In this study, we aim to establish an efficient microbial platform for production of shinorine, a UV light absorbing compound with anti-aging properties. First, we methodically selected an appropriate host for shinorine production by analyzing central carbon flux distribution data from prior studies alongside predictions from genome-scale metabolic models (GEMs). We enhanced shinorine productivity through CRISPRi-mediated downregulation and utilized shotgun proteomics to pinpoint potential competing pathways. Simultaneously, we improved the shinorine biosynthetic pathway by refining its design, optimizing promoter usage, and altering the strength of ribosome binding sites. Finally, we conducted amino acid feeding experiments under various conditions to identify the key limiting factors in shinorine production. The study combines meta-analysis of 13C-metabolic flux analysis, GEMs, synthetic biology, CRISPRi-mediated gene downregulation, and omics analysis to improve shinorine production, demonstrating the potential of Pseudomonas putida KT2440 as platform for shinorine production.


Asunto(s)
Ingeniería Metabólica , Pseudomonas putida , Protectores Solares , Pseudomonas putida/metabolismo , Pseudomonas putida/genética , Protectores Solares/metabolismo
3.
Metab Eng ; 82: 157-170, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369052

RESUMEN

Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the "IPP-bypass" pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.


Asunto(s)
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Carbono/metabolismo , Ingeniería Metabólica
4.
Artículo en Inglés | MEDLINE | ID: mdl-39013608

RESUMEN

The industrial amino acid production workhorse, Corynebacterium glutamicum naturally produces low levels of 2,3,5,6-tetramethylpyrazine (TMP), a valuable flavor, fragrance and commodity chemical. Here we demonstrate TMP production (∼0.8 ​g L-1) in C. glutamicum type strain ATCC13032 via overexpression of acetolactate synthase and/or alpha-acetolactate decarboxylase from Lactococcus lactis in CGXII minimal medium supplemented with 40 g L-1 glucose. This engineered strain also demonstrated growth and TMP production when the minimal medium was supplemented with up to 40% (v v-1) hydrolysates derived from ionic liquid pretreated sorghum biomass. A key objective was to take the fully engineered strain developed in this study and interrogate media parameters that influence the production of TMP, a critical post strain engineering optimization. Design of experiments in a high throughput plate format identified glucose, urea and their ratio as significant components affecting TMP production. These two components were further optimized using response surface methodology. In the optimized CGXII medium, the engineered strain could produce up to 3.56 g L-1 TMP (4-fold enhancement in titers and 2-fold enhancement in yield, mol mol-1) from 80 g L-1 glucose and 11.9 g L-1 urea in shake flask batch cultivation.

5.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34168079

RESUMEN

Carbohydrate active enzymes (CAZymes) are vital for the lignocellulose-based biorefinery. The development of hypersecreting fungal protein production hosts is therefore a major aim for both academia and industry. However, despite advances in our understanding of their regulation, the number of promising candidate genes for targeted strain engineering remains limited. Here, we resequenced the genome of the classical hypersecreting Neurospora crassa mutant exo-1 and identified the causative point of mutation to reside in the F-box protein-encoding gene, NCU09899. The corresponding deletion strain displayed amylase and invertase activities exceeding those of the carbon catabolite derepressed strain Δcre-1, while glucose repression was still mostly functional in Δexo-1 Surprisingly, RNA sequencing revealed that while plant cell wall degradation genes are broadly misexpressed in Δexo-1, only a small fraction of CAZyme genes and sugar transporters are up-regulated, indicating that EXO-1 affects specific regulatory factors. Aiming to elucidate the underlying mechanism of enzyme hypersecretion, we found the high secretion of amylases and invertase in Δexo-1 to be completely dependent on the transcriptional regulator COL-26. Furthermore, misregulation of COL-26, CRE-1, and cellular carbon and nitrogen metabolism was confirmed by proteomics. Finally, we successfully transferred the hypersecretion trait of the exo-1 disruption by reverse engineering into the industrially deployed fungus Myceliophthora thermophila using CRISPR-Cas9. Our identification of an important F-box protein demonstrates the strength of classical mutants combined with next-generation sequencing to uncover unanticipated candidates for engineering. These data contribute to a more complete understanding of CAZyme regulation and will facilitate targeted engineering of hypersecretion in further organisms of interest.


Asunto(s)
Proteínas F-Box/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Ingeniería Genética , Neurospora crassa/enzimología , Neurospora crassa/genética , Amilasas/metabolismo , Carbono/farmacología , Represión Catabólica , Proteínas F-Box/metabolismo , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mutación/genética , Nitrógeno/metabolismo , Fenotipo , Secuenciación Completa del Genoma , Xilosa/metabolismo , beta-Fructofuranosidasa/metabolismo
6.
Environ Microbiol ; 25(2): 493-504, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36465038

RESUMEN

The Pseudomonas putida group in the Gammaproteobacteria has been intensively studied for bioremediation and plant growth promotion. Members of this group have recently emerged as promising hosts to convert intermediates derived from plant biomass to biofuels and biochemicals. However, most strains of P. putida cannot metabolize pentose sugars derived from hemicellulose. Here, we describe three isolates that provide a broader view of the pentose sugar catabolism in the P. putida group. One of these isolates clusters with the well-characterized P. alloputida KT2440 (Strain BP6); the second isolate clustered with plant growth-promoting strain P. putida W619 (Strain M2), while the third isolate represents a new species in the group (Strain BP8). Each of these isolates possessed homologous genes for oxidative xylose catabolism (xylDXA) and a potential xylonate transporter. Strain M2 grew on arabinose and had genes for oxidative arabinose catabolism (araDXA). A CRISPR interference (CRISPRi) system was developed for strain M2 and identified conditionally essential genes for xylose growth. A glucose dehydrogenase was found to be responsible for initial oxidation of xylose and arabinose in strain M2. These isolates have illuminated inherent diversity in pentose catabolism in the P. putida group and may provide alternative hosts for biomass conversion.


Asunto(s)
Pentosas , Pseudomonas putida , Pentosas/metabolismo , Xilosa/metabolismo , Arabinosa/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Estrés Oxidativo
7.
Appl Environ Microbiol ; 89(10): e0085223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37724856

RESUMEN

Pseudomonas putida have emerged as promising biocatalysts for the conversion of sugars and aromatic compounds obtained from lignocellulosic biomass. Understanding the role of carbon catabolite repression (CCR) in these strains is critical to optimize biomass conversion to fuels and chemicals. The CCR functioning in P. putida M2, a strain capable of consuming both hexose and pentose sugars as well as aromatic compounds, was investigated by cultivation experiments, proteomics, and CRISPRi-based gene repression. Strain M2 co-utilized sugars and aromatic compounds simultaneously; however, during cultivation with glucose and aromatic compounds (p-coumarate and ferulate) mixture, intermediates (4-hydroxybenzoate and vanillate) accumulated, and substrate consumption was incomplete. In contrast, xylose-aromatic consumption resulted in transient intermediate accumulation and complete aromatic consumption, while xylose was incompletely consumed. Proteomics analysis revealed that glucose exerted stronger repression than xylose on the aromatic catabolic proteins. Key glucose (Eda) and xylose (XylX) catabolic proteins were also identified at lower abundance during cultivation with aromatic compounds implying simultaneous catabolite repression by sugars and aromatic compounds. Reduction of crc expression via CRISPRi led to faster growth and glucose and p-coumarate uptake in the CRISPRi strains compared to the control, while no difference was observed on xylose+p-coumarate. The increased abundances of Eda and amino acid biosynthesis proteins in the CRISPRi strain further supported these observations. Lastly, small RNAs (sRNAs) sequencing results showed that CrcY and CrcZ homologues levels in M2, previously identified in P. putida strains, were lower under strong CCR (glucose+p-coumarate) condition compared to when repression was absent (p-coumarate or glucose only).IMPORTANCEA newly isolated Pseudomonas putida strain, P. putida M2, can utilize both hexose and pentose sugars as well as aromatic compounds making it a promising host for the valorization of lignocellulosic biomass. Pseudomonads have developed a regulatory strategy, carbon catabolite repression, to control the assimilation of carbon sources in the environment. Carbon catabolite repression may impede the simultaneous and complete metabolism of sugars and aromatic compounds present in lignocellulosic biomass and hinder the development of an efficient industrial biocatalyst. This study provides insight into the cellular physiology and proteome during mixed-substrate utilization in P. putida M2. The phenotypic and proteomics results demonstrated simultaneous catabolite repression in the sugar-aromatic mixtures, while the CRISPRi and sRNA sequencing demonstrated the potential role of the crc gene and small RNAs in carbon catabolite repression.


Asunto(s)
Represión Catabólica , Pseudomonas putida , Azúcares/metabolismo , Xilosa/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Glucosa/metabolismo , Hexosas/metabolismo , Pentosas/metabolismo , Carbono/metabolismo
8.
Chemistry ; 29(27): e202300330, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-36746778

RESUMEN

The efficient utilization of lignin, the direct source of renewable aromatics, into value-added renewable chemicals is an important step towards sustainable biorefinery practices. Nevertheless, owing to the random heterogeneous structure and limited solubility, lignin utilization has been primarily limited to burning for energy. The catalytic depolymerization of lignin has been proposed and demonstrated as a viable route to sustainable biorefinery, however, low yields and poor selectivity of products, high char formation, and limited to no recycling of transition-metal-based catalyst involved in lignin depolymerization demands attention to enable practical-scale lignocellulosic biorefineries. In this study, we demonstrate the catalytic depolymerization of ionic liquid-based biorefinery poplar lignin into guaiacols over a reusable zirconium phosphate supported palladium catalyst. The essence of the study lies in the high conversion (>80 %), minimum char formation (7-16 %), high yields of guaiacols (up to 200 mg / g of lignin), and catalyst reusability. Both solid residue, liquid stream, and gaseous products were thoroughly characterized using ICP-OES, PXRD, CHN analysis, GC-MS, GPC, and 2D NMR to understand the hydrogenolysis pathway.

9.
Anal Biochem ; 662: 114997, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435200

RESUMEN

We described a mass spectrometry-based assay to rapidly quantify the production of primary alcohols directly from cell cultures. This novel assay used the combination of TEMPO-based oxidation chemistry and oxime ligation, followed by product analysis based on Nanostructure-Initiator Mass Spectrometry. This assay enables quantitative monitor both C5 to C18 alcohols as well as glucose and gluconate in the growth medium to support strain characterization and optimization. We find that this assay yields similar results to gas chromatography for isoprenol production but required much less acquisition time per sample. We applied this assay to gain new insights into P. Putida's utilization of alcohols and find that this strain largely could not grow on heptanol and octanol.


Asunto(s)
Nanoestructuras , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas/métodos , Nanoestructuras/química , Glucosa , Etanol
10.
Proc Natl Acad Sci U S A ; 117(15): 8639-8648, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32220956

RESUMEN

Coproduction of high-value bioproducts at biorefineries is a key factor in making biofuels more cost-competitive. One strategy for generating coproducts is to directly engineer bioenergy crops to accumulate bioproducts in planta that can be fractionated and recovered at biorefineries. Here, we develop quantitative insights into the relationship between bioproduct market value and target accumulation rates by investigating a set of industrially relevant compounds already extracted from plant sources with a wide range of market prices and applications, including <$10/kg (limonene, latex, and polyhydroxybutyrate [PHB]), $10 to $100/kg (cannabidiol), and >$100/kg (artemisinin). These compounds are used to identify a range of mass fraction thresholds required to achieve net economic benefits for biorefineries and the additional amounts needed to reach a target $2.50/gal biofuel selling price, using cellulosic ethanol production as a test case. Bioproduct market prices and recovery costs determine the accumulation threshold; we find that moderate- to high-value compounds (i.e., cannabidiol and artemisinin) offer net economic benefits at accumulation rates of just 0.01% dry weight (dwt) to 0.02 dwt%. Lower-value compounds, including limonene, latex, and PHB, require at least an order-of-magnitude greater accumulation to overcome additional extraction and recovery costs (0.3 to 1.2 dwt%). We also find that a diversified approach is critical. For example, global artemisinin demand could be met with fewer than 10 biorefineries, while global demand for latex is equivalent to nearly 180 facilities. Our results provide a roadmap for future plant metabolic engineering efforts aimed at increasing the value derived from bioenergy crops.


Asunto(s)
Biocombustibles/economía , Biomasa , Costos y Análisis de Costo , Productos Agrícolas/economía , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/provisión & distribución
11.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771097

RESUMEN

The range of applications for industrial hemp has consistently increased in various sectors over the years. For example, hemp hurd can be used as a resource to produce biodegradable packaging materials when incorporated into a fungal mycelium composite, a process that has been commercialized. Although these packaging materials can be composted after usage, they may present an opportunity for valorization in a biorefinery setting. Here, we demonstrate the potential of using this type of discarded packaging composite as a feedstock for biofuel production. A one-pot ionic liquid-based biomass deconstruction and conversion process was implemented, and the results from the packaging material were compared with those obtained from untreated hemp hurd. At a 120 °C reaction temperature, 7.5% ionic liquid loading, and 2 h reaction time, the packaging materials showed a higher lignocellulosic sugar yield and sugar concentrations than hemp hurd. Hydrolysates prepared from packaging materials also promoted production of higher titers (1400 mg/L) of the jet-fuel precursor bisabolene when used to cultivate an engineered strain of the yeast Rhodosporidium toruloides. Box-Behnken experiments revealed that pretreatment parameters affected the hemp hurd and packaging materials differently, evidencing different degrees of recalcitrance. This study demonstrated that a hemp hurd-based packaging material can be valorized a second time once it reaches the end of its primary use by supplying it as a feedstock to produce biofuels.


Asunto(s)
Cannabis , Líquidos Iónicos , Lignina , Azúcares , Tecnología , Biocombustibles , Biomasa
12.
Microb Cell Fact ; 21(1): 254, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482295

RESUMEN

BACKGROUND: Rhodosporidium toruloides is capable of co-utilization of complex carbon sources and robust growth from lignocellulosic hydrolysates. This oleaginous yeast is therefore an attractive host for heterologous production of valuable bioproducts at high titers from low-cost, deconstructed biomass in an economically and environmentally sustainable manner. Here we demonstrate this by engineering R. toruloides to produce the polyketide triacetic acid lactone (TAL) directly from unfiltered hydrolysate deconstructed from biomass with minimal unit process operations. RESULTS: Introduction of the 2-pyrone synthase gene into R. toruloides enabled the organism to produce 2.4 g/L TAL from simple media or 2.0 g/L from hydrolysate produced from sorghum biomass. Both of these titers are on par with titers from other better-studied microbial hosts after they had been heavily engineered. We next demonstrate that filtered hydrolysates produced from ensiled sorghum are superior to those derived from dried sorghum for TAL production, likely due to the substantial organic acids produced during ensiling. We also demonstrate that the organic acids found in ensiled biomass can be used for direct synthesis of ionic liquids within the biomass pretreatment process, enabling consolidation of unit operations of in-situ ionic liquid synthesis, pretreatment, saccharification, and fermentation into a one-pot, separations-free process. Finally, we demonstrate this consolidation in a 2 L bioreactor using unfiltered hydrolysate, producing 3.9 g/L TAL. CONCLUSION: Many steps involved in deconstructing biomass into fermentable substrate can be combined into a distinct operation, and directly fed to cultures of engineered R. toruloides cultures for subsequent valorization into gram per liter titers of TAL in a cost-effective manner.

13.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234813

RESUMEN

Growing interest in sustainable sources of chemicals and energy from renewable and reliable sources has stimulated the design and synthesis of renewable Schiff-base (iminium) ionic liquids (ILs) to replace fossil-derived ILs. In this study, we report on the synthesis of three unique iminium-acetate ILs from lignin-derived aldehyde for a sustainable "future" lignocellulosic biorefinery. The synthesized ILs contained only imines or imines along with amines in their structure; the ILs with only imines group exhibited better pretreatment efficacy, achieving >89% sugar release. Various analytical and computational tools were employed to understand the pretreatment efficacy of these ILs. This is the first study to demonstrate the ease of synthesis of these renewable ILs, and therefore, opens the door for a new class of "Schiff-base ILs" for further investigation that could also be designed to be task specific.


Asunto(s)
Líquidos Iónicos , Lignina , Aldehídos , Aminas , Biomasa , Hidrólisis , Iminas , Líquidos Iónicos/química , Lignina/química , Azúcares
14.
Metab Eng ; 64: 154-166, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33581331

RESUMEN

Isoprenol (3-methyl-3-butene-1-ol) is a valuable drop-in biofuel and an important precursor of several commodity chemicals. Synthetic microbial systems using the heterologous mevalonate pathway have recently been developed for the production of isoprenol in Escherichia coli, and a significant yield and titer improvement has been achieved through a decade of research. Saccharomyces cerevisiae has been widely used in the biotechnology industry for isoprenoid production, but there has been no good example of isoprenol production reported in this host. In this study, we engineered the budding yeast S. cerevisiae for improved biosynthesis of isoprenol. The strain engineered with the mevalonate pathway achieved isoprenol production at the titer of 36.02 ± 0.92 mg/L in the flask. The IPP (isopentenyl diphosphate)-bypass pathway, which has shown more efficient isoprenol production by avoiding the accumulation of the toxic intermediate in E. coli, was also constructed in S. cerevisiae and improved the isoprenol titer by 2-fold. We further engineered the strains by deleting a promiscuous endogenous kinase that could divert the pathway flux away from the isoprenol production and improved the titer to 130.52 ± 8.01 mg/L. Finally, we identified a pathway bottleneck using metabolomics analysis and overexpressed a promiscuous alkaline phosphatase to relieve this bottleneck. The combined efforts resulted in the titer improvement to 383.1 ± 31.62 mg/L in the flask. This is the highest isoprenol titer up to date in S. cerevisiae and this work provides the key strategies to engineer yeast as an industrial platform for isoprenol production.


Asunto(s)
Proteínas de Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ingeniería Metabólica , Ácido Mevalónico , Saccharomyces cerevisiae/genética
15.
Metab Eng ; 63: 34-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221420

RESUMEN

Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources, and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing, and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.


Asunto(s)
Aprendizaje Automático , Ingeniería Metabólica , Algoritmos , Edición Génica
16.
Microb Cell Fact ; 20(1): 181, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526022

RESUMEN

Hydroxycinnamic acids such as p-coumaric acid (CA) are chemically linked to lignin in grassy biomass with fairly labile ester bonds and therefore represent a straightforward opportunity to extract and valorize lignin components. In this work, we investigated the enzymatic conversion of CA extracted from lignocellulose to 4-vinylphenol (4VP) by expressing a microbial phenolic acid decarboxylase in Corynebacterium glutamicum, Escherichia coli, and Bacillus subtilis. The performance of the recombinant strains was evaluated in response to the substrate concentration in rich medium or a lignin liquor and the addition of an organic overlay to perform a continuous product extraction in batch cultures. We found that using undecanol as an overlay enhanced the 4VP titers under high substrate concentrations, while extracting > 97% of the product from the aqueous phase. C. glutamicum showed the highest tolerance to CA and resulted in the accumulation of up to 187 g/L of 4VP from pure CA in the overlay with a 90% yield when using rich media, or 17 g/L of 4VP with a 73% yield from CA extracted from lignin. These results indicate that C. glutamicum is a suitable host for the high-level production of 4VP and that further bioprocess engineering strategies should be explored to optimize the production, extraction, and purification of 4VP from lignin with this organism.


Asunto(s)
Bacterias/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Ingeniería Metabólica/normas , Fenoles/análisis , Fenoles/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Técnicas de Cultivo Celular por Lotes , Carboxiliasas/genética , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Medios de Cultivo/química , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Ingeniería Metabólica/métodos
17.
Proc Natl Acad Sci U S A ; 115(4): E753-E761, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29317534

RESUMEN

The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus, and A. steynii) have been whole-genome PacBio sequenced to provide genetic references in three Aspergillus sections. A. taichungensis and A. candidus also were sequenced for SM elucidation. Thirteen Aspergillus genomes were analyzed with comparative genomics to determine phylogeny and genetic diversity, showing that each presented genome contains 15-27% genes not found in other sequenced Aspergilli. In particular, A. novofumigatus was compared with the pathogenic species A. fumigatus This suggests that A. novofumigatus can produce most of the same allergens, virulence, and pathogenicity factors as A. fumigatus, suggesting that A. novofumigatus could be as pathogenic as A. fumigatus Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences, and predictive algorithms. We thus identify putative SM clusters for aflatoxin, chlorflavonin, and ochrindol in A. ochraceoroseus, A. campestris, and A. steynii, respectively, and novofumigatonin, ent-cycloechinulin, and epi-aszonalenins in A. novofumigatus Our study delivers six fungal genomes, showing the large diversity found in the Aspergillus genus; highlights the potential for discovery of beneficial or harmful SMs; and supports reports of A. novofumigatus pathogenicity. It also shows how biological, biochemical, and genomic information can be combined to identify genes involved in the biosynthesis of specific SMs.


Asunto(s)
Aflatoxinas/genética , Aspergillus/genética , Aspergillus/metabolismo , Familia de Multigenes , Metabolismo Secundario/genética , Aflatoxinas/biosíntesis , Alérgenos/genética , Aspergillus/patogenicidad , Metilación de ADN , Evolución Molecular , Flavonoides/biosíntesis , Genoma Fúngico , Alcaloides Indólicos/metabolismo , Filogenia , Terpenos/metabolismo , Secuenciación Completa del Genoma
18.
Microb Cell Fact ; 19(1): 208, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33183275

RESUMEN

BACKGROUND: In an effort to ensure future energy security, reduce greenhouse gas emissions and create domestic jobs, the US has invested in technologies to develop sustainable biofuels and bioproducts from renewable carbon sources such as lignocellulosic biomass. Bio-derived jet fuel is of particular interest as aviation is less amenable to electrification compared to other modes of transportation and synthetic biology provides the ability to tailor fuel properties to enhance performance. Specific energy and energy density are important properties in determining the attractiveness of potential bio-derived jet fuels. For example, increased energy content can give the industry options such as longer range, higher load or reduced takeoff weight. Energy-dense sesquiterpenes have been identified as potential next-generation jet fuels that can be renewably produced from lignocellulosic biomass. RESULTS: We developed a biomass deconstruction and conversion process that enabled the production of two tricyclic sesquiterpenes, epi-isozizaene and prespatane, from the woody biomass poplar using the versatile basidiomycete Rhodosporidium toruloides. We demonstrated terpene production at both bench and bioreactor scales, with prespatane titers reaching 1173.6 mg/L when grown in poplar hydrolysate in a 2 L bioreactor. Additionally, we examined the theoretical fuel properties of prespatane and epi-isozizaene in their hydrogenated states as blending options for jet fuel, and compared them to aviation fuel, Jet A. CONCLUSION: Our findings indicate that prespatane and epi-isozizaene in their hydrogenated states would be attractive blending options in Jet A or other lower density renewable jet fuels as they would improve viscosity and increase their energy density. Saturated epi-isozizaene and saturated prespatane have energy densities that are 16.6 and 18.8% higher than Jet A, respectively. These results highlight the potential of R. toruloides as a production host for the sustainable and scalable production of bio-derived jet fuel blends, and this is the first report of prespatane as an alternative jet fuel.


Asunto(s)
Biocombustibles/microbiología , Hidrocarburos/metabolismo , Rhodotorula/metabolismo , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Biomasa , Reactores Biológicos , Vías Biosintéticas , Biotecnología/métodos , ADN de Hongos , Microbiología Industrial , Lignina , Viabilidad Microbiana , Populus
19.
Phys Chem Chem Phys ; 22(5): 2878-2886, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31950118

RESUMEN

Keggin-type polyoxometalate derived ionic liquids (POM-ILs) have recently been presented as effective solvent systems for biomass delignification. To investigate the mechanism of lignin dissolution in POM-ILs, the system involving POM-IL ([C4C1Im]3[PW12O40]) and guaiacyl glycerol-ß-guaiacyl ether (GGE), which contains a ß-O-4 bond (the most dominant bond moiety in lignin), was studied using quantum mechanical calculations and molecular dynamics simulations. These studies show that more stable POM-IL structures are formed when [C4C1Im]+ is anchored in the connecting four terminal oxygen region of the [PW12O40]3- surface. The cations in POM-ILs appear to stabilize the geometry by offering strong and positively charged sites, and the POM anion is a good H-bond acceptor. Calculations of POM-IL interacting with GGE show the POM anion interacts strongly with GGE through many H-bonds and π-π interactions which are the main interactions between the POM-IL anion and GGE and are strong enough to force GGE into highly bent conformations. These simulations provide fundamental models of the dissolution mechanism of lignin by POM-IL, which is promoted by strong interactions of the POM-IL anion with lignin.


Asunto(s)
Líquidos Iónicos/química , Lignina/química , Simulación de Dinámica Molecular , Teoría Cuántica , Compuestos de Tungsteno/química , Guaifenesina/análogos & derivados , Guaifenesina/química , Enlace de Hidrógeno , Lignina/metabolismo , Solubilidad , Electricidad Estática
20.
Proc Natl Acad Sci U S A ; 114(16): E3205-E3214, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373573

RESUMEN

Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, was previously available. LigM-catalyzed demethylation enables further modification and ring opening of the single-ring aromatics vanillate and 3-O-methylgallate, which are common byproducts of biofuel production. Here, we characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. These results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.


Asunto(s)
Oxidorreductasas O-Demetilantes/química , Oxidorreductasas O-Demetilantes/metabolismo , Sphingomonas/enzimología , Tirosina/metabolismo , Catálisis , Cristalografía por Rayos X , Cinética , Redes y Vías Metabólicas , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA