Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 14(10): e1007682, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30296255

RESUMEN

Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models. In addition, overexpression may obscure the contribution of SOD1 loss of function in the degeneration of different neuronal populations. Here, we report the first single-copy, ALS knock-in models in C. elegans generated by transposon- or CRISPR/Cas9- mediated genome editing of the endogenous sod-1 gene. Introduction of ALS patient amino acid changes A4V, H71Y, L84V, G85R or G93A into the C. elegans sod-1 gene yielded single-copy/knock-in ALS SOD1 models. These differ from previously reported overexpression models in multiple assays. In single-copy/knock-in models, we observed differential impact of sod-1 ALS alleles on glutamatergic and cholinergic neurodegeneration. A4V, H71Y, G85R, and G93A animals showed increased SOD1 protein accumulation and oxidative stress induced degeneration, consistent with a toxic gain of function in cholinergic motor neurons. By contrast, H71Y, L84V, and G85R lead to glutamatergic neuron degeneration due to sod-1 loss of function after oxidative stress. However, dopaminergic and serotonergic neuronal populations were spared in single-copy ALS models, suggesting a neuronal-subtype specificity previously not reported in invertebrate ALS SOD1 models. Combined, these results suggest that knock-in models may reproduce the neurotransmitter-type specificity of ALS and that both SOD1 loss and gain of toxic function differentially contribute to ALS pathogenesis in different neuronal populations.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Neuronas Colinérgicas/patología , Neuronas Motoras/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa/genética , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Sistemas CRISPR-Cas , Neuronas Colinérgicas/metabolismo , Modelos Animales de Enfermedad , Mutación con Ganancia de Función , Frecuencia de los Genes , Técnicas de Sustitución del Gen , Ácido Glutámico/metabolismo , Humanos , Mutación con Pérdida de Función , Neuronas Motoras/metabolismo
2.
Cell Rep ; 38(4): 110195, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35081350

RESUMEN

How mutations in FUS lead to neuronal dysfunction in amyotrophic lateral sclerosis (ALS) patients remains unclear. To examine mechanisms underlying ALS FUS dysfunction, we generate C. elegans knockin models using CRISPR-Cas9-mediated genome editing, creating R524S and P525L ALS FUS models. Although FUS inclusions are not detected, ALS FUS animals show defective neuromuscular function and locomotion under stress. Unlike animals lacking the endogenous FUS ortholog, ALS FUS animals have impaired neuronal autophagy and increased SQST-1 accumulation in motor neurons. Loss of sqst-1, the C. elegans ortholog for ALS-linked, autophagy adaptor protein SQSTM1/p62, suppresses both neuromuscular and stress-induced locomotion defects in ALS FUS animals, but does not suppress neuronal autophagy defects. Therefore, autophagy dysfunction is upstream of, and not dependent on, SQSTM1 function in ALS FUS pathogenesis. Combined, our findings demonstrate that autophagy dysfunction likely contributes to protein homeostasis and neuromuscular defects in ALS FUS knockin animals.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Autofagia/fisiología , Neuronas Motoras/patología , Proteína FUS de Unión a ARN/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Caenorhabditis elegans , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Mutación
3.
Elife ; 62017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28463115

RESUMEN

Spinal Muscular Atrophy (SMA) is caused by diminished Survival of Motor Neuron (SMN) protein, leading to neuromuscular junction (NMJ) dysfunction and spinal motor neuron (MN) loss. Here, we report that reduced SMN function impacts the action of a pertinent microRNA and its mRNA target in MNs. Loss of the C. elegans SMN ortholog, SMN-1, causes NMJ defects. We found that increased levels of the C. elegans Gemin3 ortholog, MEL-46, ameliorates these defects. Increased MEL-46 levels also restored perturbed microRNA (miR-2) function in smn-1(lf) animals. We determined that miR-2 regulates expression of the C. elegans M2 muscarinic receptor (m2R) ortholog, GAR-2. GAR-2 loss ameliorated smn-1(lf) and mel-46(lf) synaptic defects. In an SMA mouse model, m2R levels were increased and pharmacological inhibition of m2R rescued MN process defects. Collectively, these results suggest decreased SMN leads to defective microRNA function via MEL-46 misregulation, followed by increased m2R expression, and neuronal dysfunction in SMA.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , MicroARNs/metabolismo , Atrofia Muscular Espinal/fisiopatología , Receptor Muscarínico M2/análisis , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , ARN Helicasas DEAD-box/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA