Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 609(7928): 722-727, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868345

RESUMEN

In addition to its use in the fertilizer and chemical industries1, ammonia is currently seen as a potential replacement for carbon-based fuels and as a carrier for worldwide transportation of renewable energy2. Implementation of this vision requires transformation of the existing fossil-fuel-based technology for NH3 production3 to a simpler, scale-flexible technology, such as the electrochemical lithium-mediated nitrogen-reduction reaction3,4. This provides a genuine pathway from N2 to ammonia, but it is currently hampered by limited yield rates and low efficiencies4-12. Here we investigate the role of the electrolyte in this reaction and present a high-efficiency, robust process that is enabled by compact ionic layering in the electrode-electrolyte interface region. The interface is generated by a high-concentration imide-based lithium-salt electrolyte, providing stabilized ammonia yield rates of 150 ± 20 nmol s-1 cm-2 and a current-to-ammonia efficiency that is close to 100%. The ionic assembly formed at the electrode surface suppresses the electrolyte decomposition and supports stable N2 reduction. Our study highlights the interrelation between the performance of the lithium-mediated nitrogen-reduction reaction and the physicochemical properties of the electrode-electrolyte interface. We anticipate that these findings will guide the development of a robust, high-performance process for sustainable ammonia production.

2.
Small ; 20(27): e2311771, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38268308

RESUMEN

Insufficient thermal stability of vanadium redox flow battery (VRFB) electrolytes at elevated temperatures (>40 °C) remains a challenge in the development and commercialization of this technology, which otherwise presents a broad range of technological advantages for the long-term storage of intermittent renewable energy. Herein, a new concept of combined additives is presented, which significantly increases thermal stability of the battery, enabling safe operation to the highest temperature (50 °C) tested to date. This is achieved by combining two chemically distinct additives-inorganic ammonium phosphate and polyvinylpyrrolidone (PVP) surfactant, which collectively decelerate both protonation and agglomeration of the oxo-vanadium species in solution and thereby significantly suppress detrimental formation of precipitates. Specifically, the precipitation rate is reduced by nearly 75% under static conditions at 50° C. This improvement is reflected in the robust operation of a complete VRFB device for over 300 h of continuous operation at 50 °C, achieving an impressive 83% voltage efficiency at 100 mA cm‒2 current density, with no precipitation detected in either the electrode/flow-frame or electrolyte tank.

3.
Small ; : e2304650, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863809

RESUMEN

Implementation of proton-exchange membrane water electrolyzers for large-scale sustainable hydrogen production requires the replacement of scarce noble-metal anode electrocatalysts with low-cost alternatives. However, such earth-abundant materials often exhibit inadequate stability and/or catalytic activity at low pH, especially at high rates of the anodic oxygen evolution reaction (OER). Here, the authors explore the influence of a dielectric nanoscale-thin oxide layer, namely Al2 O3 , SiO2 , TiO2 , SnO2 , and HfO2 , prepared by atomic layer deposition, on the stability and catalytic activity of low-cost and active but insufficiently stable Co3 O4 anodes. It is demonstrated that the ALD layers improve both the stability and activity of Co3 O4 following the order of HfO2 > SnO2 > TiO2 > Al2 O3 , SiO2 . An optimal HfO2 layer thickness of 12 nm enhances the Co3 O4 anode durability by more than threefold, achieving over 42 h of continuous electrolysis at 10 mA cm-2 in 1 m H2 SO4 electrolyte. Density functional theory is used to investigate the superior performance of HfO2 , revealing a major role of the HfO2 |Co3 O4 interlayer forces in the stabilization mechanism. These insights offer a potential strategy to engineer earth-abundant materials for low-pH OER catalysts with improved performance from earth-abundant materials for efficient hydrogen production.

4.
Small ; 19(25): e2208074, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932896

RESUMEN

Unlocking the potential of the hydrogen economy is dependent on achieving green hydrogen (H2 ) production at competitive costs. Engineering highly active and durable catalysts for both oxygen and hydrogen evolution reactions (OER and HER) from earth-abundant elements is key to decreasing costs of electrolysis, a carbon-free route for H2 production. Here, a scalable strategy to prepare doped cobalt oxide (Co3 O4 ) electrocatalysts with ultralow loading, disclosing the role of tungsten (W), molybdenum (Mo), and antimony (Sb) dopants in enhancing OER/HER activity in alkaline conditions, is reported. In situ Raman and X-ray absorption spectroscopies, and electrochemical measurements demonstrate that the dopants do not alter the reaction mechanisms but increase the bulk conductivity and density of redox active sites. As a result, the W-doped Co3 O4 electrode requires ≈390 and ≈560 mV overpotentials to reach ±10 and ±100 mA cm-2 for OER and HER, respectively, over long-term electrolysis. Furthermore, optimal Mo-doping leads to the highest OER and HER activities of 8524 and 634 A g-1 at overpotentials of 0.67 and 0.45 V, respectively. These novel insights provide directions for the effective engineering of Co3 O4 as a low-cost material for green hydrogen electrocatalysis at large scales.

5.
Faraday Discuss ; 243(0): 557-570, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337744

RESUMEN

The activation of dinitrogen as a fundamental step in reactions to produce nitrogen compounds, including ammonia and nitrates, has a cornerstone role in chemistry. Bringing together research from disparate fields where this can be achieved sustainably, this Faraday Discussion seeks to build connections between approaches that can stimulate further advances. In this paper we set out to provide an overview of these different approaches and their commonalities. We explore experimental aspects including the positive role of increasing nitrogen pressure in some fields, as well as offering perspectives on when 15N2 experiments might, and might not, be necessary. Deconstructing the nitrogen reduction reaction, we attempt to provide a common framework of energetic scales within which all of the different approaches and their components can be understood. On sustainability, we argue that although green ammonia produced from a green-H2-fed Haber-Bosch process seems to fit the bill, there remain many real-world contexts in which other, sustainable, approaches to this vital reaction are urgently needed.

6.
Inorg Chem ; 62(24): 9379-9390, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37279492

RESUMEN

Iron sulfides are key materials in metalloprotein catalysis. One interesting aspect of iron sulfides in biology is the incorporation of secondary metals, for example, Mo, in nitrogenase. These secondary metals may provide vital clues as to how these enzymes first emerged in nature. In this work, we examined the materials resulting from the coprecipitation of molybdenum with iron sulfides using X-ray absorption spectroscopy (XAS). The materials were tested as catalysts, and direct reductants using nitrite (NO2-) and protons (H+) as test substrates. It was found that Mo will coprecipitate with iron as sulfides, however, in distinct ways depending on the stoichiometric ratios of Mo, Fe, and HS-. It was observed that the selectivity of reduction products depends on the amount of molybdenum, with the presence of approximately at 10% Mo optimizing ammonium/ammonia (NH4+/NH3) production from NO2- and minimizing competitive hydrogen (H2) formation from protons (H+) with a secondary reductant.

7.
Nat Mater ; 19(10): 1096-1101, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32367080

RESUMEN

Non-uniform metal deposition and dendrite formation in high-density energy storage devices reduces the efficiency, safety and life of batteries with metal anodes. Superconcentrated ionic-liquid electrolytes (for example 1:1 ionic liquid:alkali ion) coupled with anode preconditioning at more negative potentials can completely mitigate these issues, and therefore revolutionize high-density energy storage devices. However, the mechanisms by which very high salt concentration and preconditioning potential enable uniform metal deposition and prevent dendrite formation at the metal anode during cycling are poorly understood, and therefore not optimized. Here, we use atomic force microscopy and molecular dynamics simulations to unravel the influence of these factors on the interface chemistry in a sodium electrolyte, demonstrating how a molten-salt-like structure at the electrode surface results in dendrite-free metal cycling at higher rates. Such a structure will support the formation of a more favourable solid electrolyte interphase, accepted as being a critical factor in stable battery cycling. This new understanding will enable engineering of efficient anode electrodes by tuning the interfacial nanostructure via salt concentration and high-voltage preconditioning.

8.
Angew Chem Int Ed Engl ; 60(29): 15821-15826, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-33884730

RESUMEN

The instability and expense of anodes for water electrolyzers with acidic electrolytes can be overcome through the implementation of a cobalt-iron-lead oxide electrocatalyst, [Co-Fe-Pb]Ox , that is self-healing in the presence of dissolved metal precursors. However, the latter requirement is pernicious for the membrane and especially the cathode half-reaction since Pb2+ and Fe3+ precursors poison the state-of-the-art platinum H2 evolving catalyst. To address this, we demonstrate the invariably stable operation of [Co-Fe-Pb]Ox in acidic solutions through a cobalt-selective self-healing mechanism without the addition of Pb2+ and Fe3+ and investigate the kinetics of the process. Soft X-ray absorption spectroscopy reveals that low concentrations of Co2+ in the solution stabilize the catalytically active Co(Fe) sites. The highly promising performance of this system is showcased by steady water electrooxidation at 80±1 °C and 10 mA cm-2 , using a flat electrode, at an overpotential of 0.56±0.01 V on a one-week timescale.

9.
Anal Chem ; 91(3): 1944-1953, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30565912

RESUMEN

Recently, we introduced the use of techniques drawn from Bayesian statistics to recover kinetic and thermodynamic parameters from voltammetric data and were able to show that the technique of large amplitude ac voltammetry yielded significantly more accurate parameter values than the equivalent dc approach. In this paper, we build on this work to show that this approach allows us, for the first time, to separate the effects of random experimental noise and inherent system variability in voltammetric experiments. We analyze ten repeated experimental data sets for the [Fe(CN)6]3-/4- process, again using large-amplitude ac cyclic voltammetry. In each of the ten cases, we obtain an extremely good fit to the experimental data and obtain very narrow distributions of the recovered parameters governing both the faradaic (the reversible formal potential, E0, the standard heterogeneous charge transfer rate constant, k0, and the charge transfer coefficient, α) and nonfaradaic terms (uncompensated resistance, Ru, and double layer capacitance, Cdl). We then employ hierarchical Bayesian methods to recover the underlying "hyperdistribution" of the faradaic and nonfaradaic parameters, showing that in general the variation between the experimental data sets is significantly greater than suggested by individual experiments, except for α where the interexperiment variation was relatively minor. Correlations between pairs of parameters are provided, and for example, reveal a weak link between k0 and Cdl (surface activity of a glassy carbon electrode surface). Finally, we discuss the implications of our findings for voltammetric experiments more generally.

10.
Angew Chem Int Ed Engl ; 58(11): 3426-3432, 2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30589176

RESUMEN

Manganese oxide (MnOx ) electrocatalysts are examined herein by in situ soft X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) during the oxidation of water buffered by borate (pH 9.2) at potentials from 0.75 to 2.25 V vs. the reversible hydrogen electrode. Correlation of L-edge XAS data with previous mechanistic studies indicates MnIV is the highest oxidation state involved in the catalytic mechanism. MnOx is transformed into birnessite at 1.45 V and does not undergo further structural phase changes. At potentials beyond this transformation, RIXS spectra show progressive enhancement of charge transfer transitions from oxygen to manganese. Theoretical analysis of these data indicates increased hybridization of the Mn-O orbitals and withdrawal of electron density from the O ligand shell. In situ XAS experiments at the O K-edge provide complementary evidence for such a transition. This step is crucial for the formation of O2 from water.

11.
Proc Natl Acad Sci U S A ; 112(47): 14506-11, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26561582

RESUMEN

A long-standing contradiction in the field of mononuclear Mo enzyme research is that small-molecule chemistry on active-site mimic compounds predicts ligand participation in the electron transfer reactions, but biochemical measurements only suggest metal-centered catalytic electron transfer. With the simultaneous measurement of substrate turnover and reversible electron transfer that is provided by Fourier-transformed alternating-current voltammetry, we show that Escherichia coli YedY is a mononuclear Mo enzyme that reconciles this conflict. In YedY, addition of three protons and three electrons to the well-characterized "as-isolated" Mo(V) oxidation state is needed to initiate the catalytic reduction of either dimethyl sulfoxide or trimethylamine N-oxide. Based on comparison with earlier studies and our UV-vis redox titration data, we assign the reversible one-proton and one-electron reduction process centered around +174 mV vs. standard hydrogen electrode at pH 7 to a Mo(V)-to-Mo(IV) conversion but ascribe the two-proton and two-electron transition occurring at negative potential to the organic pyranopterin ligand system. We predict that a dihydro-to-tetrahydro transition is needed to generate the catalytically active state of the enzyme. This is a previously unidentified mechanism, suggested by the structural simplicity of YedY, a protein in which Mo is the only metal site.


Asunto(s)
Proteínas de Escherichia coli/química , Oxidorreductasas/química , Pterinas/química , Catálisis , Dominio Catalítico , Electroquímica , Oxidación-Reducción
12.
Anal Chem ; 89(19): 10181-10187, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28770997

RESUMEN

Two zeolitic imidazolate frameworks, ZIF-67 and ZIF-8, were interrogated for their redox properties using Fourier transformed alternating current voltammetry, which revealed that the 2-methylimidazolate ligand is responsible for multiple redox transformations. Further insight was gained by employing discrete tetrahedral complexes, [M(DMIM)4]2+ (DMIM = 1,2-dimethylimidazole, M = CoII or ZnII) which have similar structural motifs to ZIFs. In this work we demonstrate a multidirectional approach that enables the complex electrochemical behavior of ZIFs to be unraveled.

13.
Anal Chem ; 89(3): 1565-1573, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28029041

RESUMEN

Rapid disulfide bond formation and cleavage is an essential mechanism of life. Using large amplitude Fourier transformed alternating current voltammetry (FTacV) we have measured previously uncharacterized disulfide bond redox chemistry in Escherichia coli HypD. This protein is representative of a class of assembly proteins that play an essential role in the biosynthesis of the active site of [NiFe]-hydrogenases, a family of H2-activating enzymes. Compared to conventional electrochemical methods, the advantages of the FTacV technique are the high resolution of the faradaic signal in the higher order harmonics and the fact that a single electrochemical experiment contains all the data needed to estimate the (very fast) electron transfer rates (both rate constants ≥ 4000 s-1) and quantify the energetics of the cysteine disulfide redox-reaction (reversible potentials for both processes approximately -0.21 ± 0.01 V vs SHE at pH 6). Previously, deriving such data depended on an inefficient manual trial-and-error approach to simulation. As a highly advantageous alternative, we describe herein an automated multiparameter data optimization analysis strategy where the simulated and experimental faradaic current data are compared for both the real and imaginary components in each of the 4th to 12th harmonics after quantifying the charging current data using the time-domain response.

14.
Chemistry ; 23(6): 1346-1352, 2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-27726210

RESUMEN

In a natural geochemical cycle, manganese-oxide minerals (MnOx ) are principally formed through a microbial process, where a putative multicopper oxidase MnxG plays an essential role. Recent success in isolating the approximately 230 kDa, enzymatically active MnxEFG protein complex, has advanced our understanding of biogenic MnOx mineralization. Here, the kinetics of MnOx formation catalyzed by MnxEFG are examined using a quartz crystal microbalance (QCM), and the first electrochemical characterization of the MnxEFG complex is reported using Fourier transformed alternating current voltammetry. The voltammetric studies undertaken using near-neutral solutions (pH 7.8) establish the apparent reversible potentials for the Type 2 Cu sites in MnxEFG immobilized on a carboxy-terminated monolayer to be in the range 0.36-0.40 V versus a normal hydrogen electrode. Oxidative priming of the MnxEFG protein complex substantially enhances the enzymatic activity, as found by in situ electrochemical QCM analysis. The biogeochemical significance of this enzyme is clear, although the role of an oxidative priming of catalytic activity might be either an evolutionary advantage or an ancient relic of primordial existence.


Asunto(s)
Compuestos de Manganeso/metabolismo , Óxidos/metabolismo , Oxidorreductasas/metabolismo , Biocatálisis , Técnicas Electroquímicas , Cinética , Microscopía Electrónica de Rastreo , Tecnicas de Microbalanza del Cristal de Cuarzo , Espectrometría por Rayos X
15.
Chemistry ; 23(54): 13482-13492, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28722330

RESUMEN

Influence of the conditions for aerobic oxidation of Mn2+(aq) catalysed by the MnxEFG protein complex on the morphology, structure and reactivity of the resulting biogenic manganese oxides (MnOx ) is explored. Physical characterisation of MnOx includes scanning and transmission electron microscopy, and X-ray photoelectron and K-edge Mn, Fe X-ray absorption spectroscopy. This characterisation reveals that the MnOx materials share the structural features of birnessite, yet differ in the degree of structural disorder. Importantly, these biogenic products exhibit strikingly different morphologies that can be easily controlled. Changing the substrate-to-protein ratio produces MnOx either as nm-thin sheets, or rods with diameters below 20 nm, or a combination of the two. Mineralisation in solutions that contain Fe2+(aq) makes solids with significant disorder in the structure, while the presence of Ca2+(aq) facilitates formation of more ordered materials. The (photo)oxidation and (photo)electrocatalytic capacity of the MnOx minerals is examined and correlated with their structural properties.

16.
J Am Chem Soc ; 138(49): 16095-16104, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960304

RESUMEN

Detection and quantification of redox transformations involved in water oxidation electrocatalysis is often not possible using conventional techniques. Herein, use of large amplitude Fourier transformed ac voltammetry and comprehensive analysis of the higher harmonics has enabled us to access the redox processes responsible for catalysis. An examination of the voltammetric data for water oxidation in borate buffered solutions (pH 9.2) at electrodes functionalized with systematically varied low loadings of cobalt (CoOx), manganese (MnOx), and nickel oxides (NiOx) has been undertaken, and extensive experiment-simulation comparisons have been introduced for the first time. Analysis shows that a single redox process controls the rate of catalysis for Co and Mn oxides, while two electron transfer events contribute in the Ni case. We apply a "molecular catalysis" model that couples a redox transformation of a surface-confined species (effective reversible potential, Eeff0) to a catalytic reaction with a substrate in solution (pseudo-first-order rate constant, k1f), accounts for the important role of a Brønsted base, and mimics the experimental behavior. The analysis revealed that Eeff0 values for CoOx, MnOx, and NiOx lie within the range 1.9-2.1 V vs reversible hydrogen electrode, and k1f varies from 2 × 103 to 4 × 104 s-1. The k1f values are much higher than reported for any water electrooxidation catalyst before. The Eeff0 values provide a guide for in situ spectroscopic characterization of the active states involved in catalysis by metal oxides.

17.
Anal Chem ; 88(9): 4724-32, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27041344

RESUMEN

Estimation of thermodynamic and kinetic parameters in electrochemical studies is usually undertaken via comparison of the experimental results with theory based on a model that mimics the experiment. The present study examines the credibility of transient d.c. and a.c. voltammetric theory-experiment comparisons for recovery of the parameters needed to model the ubiquitous mechanism when an electron transfer (E) reaction is followed by a chemical (C) step in the EC process ([Formula: see text]). The data analysis has been undertaken using optimization methods facilitated in some cases by grid computing. These techniques have been applied to the simulated (5% noise added) and experimental (reduction of trans-stilbene) voltammograms to assess the capabilities of parameter recovery of E(0) (reversible potential for the E step), k(0) (heterogeneous electron transfer rate constant at E(0)), α (charge transfer coefficient for the E step), and k(f) and k(b) (forward and backward rate constants for the C step) under different kinetic regimes. The advantages provided by the use of a.c. instead of d.c. voltammetry and data optimization methods over heuristic approaches to "experiment"-theory comparisons are discussed, as are the limitations in the efficient recovery of a unique set of parameters for the EC mechanism. In the particular experimental case examined herein, results for the protonation of the electrochemically generated stilbene dianion demonstrate that, notwithstanding significant advances in experiment and theory of voltammetric analysis, reliable recovery of the parameters for the EC mechanism with a fast chemical process remains a stiff problem.

18.
Inorg Chem ; 54(9): 4292-302, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25898208

RESUMEN

A closo-type 11-vertex osmaborane [1-(η(6)-pcym)-1-OsB10H10] (pcym = para-cymene) has been synthesized and characterized by single-crystal X-ray diffraction and elemental analysis, as well as by (11)B and (1)H NMR, UV-visible, and mass spectrometry. The redox chemistry has been probed by dc and Fourier transformed ac voltammetry and bulk reductive electrolysis in CH3CN (0.10 M (n-Bu)4NPF6) and by voltammetry in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (Pyrr1,4-NTf2), which allows the oxidative chemistry of the osmaborane to be studied. A single-crystal X-ray diffraction analysis has shown that [1-(η(6)-pcym)-1-OsB10H10] is isostructural with other metallaborane compounds of this type. In CH3CN (0.10 M (n-Bu)4NPF6), [1-(η(6)-pcym)-1-OsB10H10] undergoes two well-resolved one-electron reduction processes with reversible potentials separated by ca. 0.63-0.64 V. Analysis based on a comparison of experimental and simulated ac voltammetric data shows that the heterogeneous electron transfer rate constant (k(0)) for the first reduction process is larger than that for the second step at GC, Pt, and Au electrodes. k(0) values for both processes are also larger at GC than metal electrodes and depend on the electrode pretreatment, implying that reductions involve specific interaction with the electrode surface. EPR spectra derived from the product formed by one-electron reduction of [1-(η(6)-pcym)-1-OsB10H10] in CH3CN (0.10 M (n-Bu)4NPF6) and electron orbital data derived from the DFT calculations are used to establish that the formal oxidation state of the metal center of the original unreduced compound is Os(II). On this basis it is concluded that the metal atom in [1-(η(6)-pcym)-1-OsB10H10] and related metallaboranes makes a 3-orbital 2-electron contribution to the borane cluster. Oxidation of [1-(η(6)-pcym)-1-OsB10H10] coupled to fast chemical transformation was observed at 1.6 V vs ferrocene(0/+) in Pyrr1,4-NTf2. A reaction scheme for the oxidation involving formation of [1-(η(6)-pcym)-1-OsB10H10](+), which rearranges to an unknown electroactive derivative, is proposed, and simulations of the voltammograms are provided.

19.
Anal Chem ; 86(16): 8408-17, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25047798

RESUMEN

Many electrode processes that approach the "reversible" (infinitely fast) limit under voltammetric conditions have been inappropriately analyzed by comparison of experimental data and theory derived from the "quasi-reversible" model. Simulations based on "reversible" and "quasi-reversible" models have been fitted to an extensive series of a.c. voltammetric experiments undertaken at macrodisk glassy carbon (GC) electrodes for oxidation of ferrocene (Fc(0/+)) in CH3CN (0.10 M (n-Bu)4NPF6) and reduction of [Ru(NH3)6](3+) and [Fe(CN)6](3-) in 1 M KCl aqueous electrolyte. The confidence with which parameters such as standard formal potential (E(0)), heterogeneous electron transfer rate constant at E(0) (k(0)), charge transfer coefficient (α), uncompensated resistance (Ru), and double layer capacitance (CDL) can be reported using the "quasi-reversible" model has been assessed using bootstrapping and parameter sweep (contour plot) techniques. Underparameterization, such as that which occurs when modeling CDL with a potential independent value, results in a less than optimal level of experiment-theory agreement. Overparameterization may improve the agreement but easily results in generation of physically meaningful but incorrect values of the recovered parameters, as is the case with the very fast Fc(0/+) and [Ru(NH3)6](3+/2+) processes. In summary, for fast electrode kinetics approaching the "reversible" limit, it is recommended that the "reversible" model be used for theory-experiment comparisons with only E(0), Ru, and CDL being quantified and a lower limit of k(0) being reported; e.g., k(0) ≥ 9 cm s(-1) for the Fc(0/+) process.

20.
Langmuir ; 30(11): 3264-73, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24571209

RESUMEN

New insights into electrochemical kinetics of the flavin adenine dinucleotide (FAD) redox center of glucose-oxidase (GlcOx) immobilized on reduced graphene oxide (rGO), single- and multiwalled carbon nanotubes (SW and MWCNT), and combinations of rGO and CNTs have been gained by application of Fourier transformed AC voltammetry (FTACV) and simulations based on a range of models. A satisfactory level of agreement between experiment and theory, and hence establishment of the best model to describe the redox chemistry of FAD, was achieved with the aid of automated e-science tools. Although still not perfect, use of Marcus theory with a very low reorganization energy (≤0.3 eV) best mimics the experimental FTACV data, which suggests that the process is gated as also deduced from analysis of FTACV data obtained at different frequencies. Failure of the simplest models to fully describe the electrode kinetics of the redox center of GlcOx, including those based on the widely employed Laviron theory is demonstrated, as is substantial kinetic heterogeneity of FAD species. Use of a SWCNT support amplifies the kinetic heterogeneity, while a combination of rGO and MWCNT provides a more favorable environment for fast communication between FAD and the electrode.


Asunto(s)
Carbono/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Aspergillus niger/enzimología , Electroquímica , Electrodos , Flavina-Adenina Dinucleótido/química , Cinética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA