Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 136(1): 139-161, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34878093

RESUMEN

Angiotensin-converting enzyme inhibitors (ACEis) have been used to treat anthracycline (ANT)-induced cardiac dysfunction, and they appear beneficial for secondary prevention in high-risk patients. However, it remains unclear whether they truly prevent ANT-induced cardiac damage and provide long-lasting cardioprotection. The present study aimed to examine the cardioprotective effects of perindopril on chronic ANT cardiotoxicity in a rabbit model previously validated with the cardioprotective agent dexrazoxane (DEX) with focus on post-treatment follow-up (FU). Chronic cardiotoxicity was induced by daunorubicin (DAU; 3 mg/kg/week for 10 weeks). Perindopril (0.05 mg/kg/day) was administered before and throughout chronic DAU treatment. After the completion of treatment, significant benefits were observed in perindopril co-treated animals, particularly full prevention of DAU-induced mortality and prevention or significant reductions in cardiac dysfunction, plasma cardiac troponin T (cTnT) levels, morphological damage, and most of the myocardial molecular alterations. However, these benefits significantly waned during 3 weeks of drug-free FU, which was not salvageable by administering a higher perindopril dose. In the longer (10-week) FU period, further worsening of left ventricular function and morphological damage occurred together with heart failure (HF)-related mortality. Continued perindopril treatment in the FU period did not reverse this trend but prevented HF-related mortality and reduced the severity of the progression of cardiac damage. These findings contrasted with the robust long-lasting protection observed previously for DEX in the same model. Hence, in the present study, perindopril provided only temporary control of ANT cardiotoxicity development, which may be associated with the lack of effects on ANT-induced and topoisomerase II ß (TOP2B)-dependent DNA damage responses in the heart.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Cardiotoxicidad/prevención & control , Daunorrubicina/efectos adversos , Perindopril/uso terapéutico , Animales , Antibióticos Antineoplásicos , Cardiotoxicidad/tratamiento farmacológico , Cardiopatías/inducido químicamente , Cardiopatías/prevención & control , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/mortalidad , Masculino , Conejos , Troponina T/sangre
2.
Clin Sci (Lond) ; 135(15): 1897-1914, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34318878

RESUMEN

The anthracycline (ANT) anticancer drugs such as doxorubicin or daunorubicin (DAU) can cause serious myocardial injury and chronic cardiac dysfunction in cancer survivors. A bisdioxopiperazine agent dexrazoxane (DEX) has been developed as a cardioprotective drug to prevent these adverse events, but it is uncertain whether it is the best representative of the class. The present study used a rabbit model of chronic ANT cardiotoxicity to examine another bisdioxopiperazine compound called GK-667 (meso-(butane-2,3-diylbis(2,6-dioxopiperazine-4,1-diyl))bis(methylene)-bis(2-aminoacetate) hydrochloride), a water-soluble prodrug of ICRF-193 (meso-4,4'-(butan-2,3-diyl)bis(piperazine-2,6-dione)), as a potential cardioprotectant. The cardiotoxicity was induced by DAU (3 mg/kg, intravenously, weekly, 10 weeks), and GK-667 (1 or 5 mg/kg, intravenously) was administered before each DAU dose. The treatment with GK-667 was well tolerated and provided full protection against DAU-induced mortality and left ventricular (LV) dysfunction (determined by echocardiography and LV catheterization). Markers of cardiac damage/dysfunction revealed minor cardiac damage in the group co-treated with GK-667 in the lower dose, whereas almost full protection was achieved with the higher dose. This was associated with similar prevention of DAU-induced dysregulation of redox and calcium homeostasis proteins. GK-667 dose-dependently prevented tumor suppressor p53 (p53)-mediated DNA damage response in the LV myocardium not only in the chronic experiment but also after single DAU administration. These effects appear essential for cardioprotection, presumably because of the topoisomerase IIß (TOP2B) inhibition provided by its active metabolite ICRF-193. In addition, GK-667 administration did not alter the plasma pharmacokinetics of DAU and its main metabolite daunorubicinol (DAUol) in rabbits in vivo. Hence, GK-667 merits further investigation as a promising drug candidate for cardioprotection against chronic ANT cardiotoxicity.


Asunto(s)
Cardiomiopatías/prevención & control , Daño del ADN , Dicetopiperazinas/farmacología , Miocitos Cardíacos/efectos de los fármacos , Profármacos/farmacología , Inhibidores de Topoisomerasa II/farmacología , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Cardiotoxicidad , Enfermedad Crónica , Daunorrubicina , Modelos Animales de Enfermedad , Fibrosis , Células HL-60 , Humanos , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Conejos , Proteína p53 Supresora de Tumor/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
3.
J Pharmacol Exp Ther ; 373(3): 402-415, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32253261

RESUMEN

Bisdioxopiperazine agent dexrazoxane (ICRF-187) has been the only effective and approved drug for prevention of chronic anthracycline cardiotoxicity. However, the structure-activity relationships (SARs) of its cardioprotective effects remain obscure owing to limited investigation of its derivatives/analogs and uncertainties about its mechanism of action. To fill these knowledge gaps, we tested the hypothesis that dexrazoxane derivatives exert cardioprotection via metal chelation and/or modulation of topoisomerase IIß (Top2B) activity in chronic anthracycline cardiotoxicity. Dexrazoxane was alkylated in positions that should not interfere with the metal-chelating mechanism of cardioprotective action; that is, on dioxopiperazine imides or directly on the dioxopiperazine ring. The protective effects of these agents were assessed in vitro in neonatal cardiomyocytes. All studied modifications of dexrazoxane molecule, including simple methylation, were found to abolish the cardioprotective effects. Because this challenged the prevailing mechanistic concept and previously reported data, the two closest derivatives [(±)-4,4'-(propane-1,2-diyl)bis(1-methylpiperazine-2,6-dione) and 4-(2-(3,5-dioxopiperazin-1-yl)ethyl)-3-methylpiperazine-2,6-dione] were thoroughly scrutinized in vivo using a rabbit model of chronic anthracycline cardiotoxicity. In contrast to dexrazoxane, both compounds failed to protect the heart, as demonstrated by mortality, cardiac dysfunction, and myocardial damage parameters, although the pharmacokinetics and metal-chelating properties of their metabolites were comparable to those of dexrazoxane. The loss of cardiac protection was shown to correlate with their abated potential to inhibit and deplete Top2B both in vitro and in vivo. These findings suggest a very tight SAR between bisdioxopiperazine derivatives and their cardioprotective effects and support Top2B as a pivotal upstream druggable target for effective cardioprotection against anthracycline cardiotoxicity. SIGNIFICANCE STATEMENT: This study has revealed the previously unexpected tight structure-activity relationships of cardioprotective effects in derivatives of dexrazoxane, which is the only drug approved for the prevention of cardiomyopathy and heart failure induced by anthracycline anticancer drugs. The data presented in this study also strongly argue against the importance of metal-chelating mechanisms for the induction of this effect and support the viability of topoisomerase IIß as an upstream druggable target for effective and clinically translatable cardioprotection.


Asunto(s)
Antraciclinas/efectos adversos , Cardiotoxicidad/tratamiento farmacológico , ADN-Topoisomerasas de Tipo II/metabolismo , Dexrazoxano/farmacología , Corazón/efectos de los fármacos , Sustancias Protectoras/farmacología , Inhibidores de Topoisomerasa II/farmacología , Animales , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/metabolismo , Línea Celular Tumoral , Células HL-60 , Humanos , Masculino , Modelos Animales , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Conejos , Ratas , Ratas Wistar , Relación Estructura-Actividad
4.
Clin Sci (Lond) ; 133(16): 1827-1844, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31409729

RESUMEN

Although proteasome inhibitors (PIs) are modern targeted anticancer drugs, they have been associated with a certain risk of cardiotoxicity and heart failure (HF). Recently, PIs have been combined with anthracyclines (ANTs) to further boost their anticancer efficacy. However, this raised concerns regarding cardiac safety, which were further supported by several in vitro studies on immature cardiomyocytes. In the present study, we investigated the toxicity of clinically used PIs alone (bortezomib (BTZ), carfilzomib (CFZ)) as well as their combinations with an ANT (daunorubicin (DAU)) in both neonatal and adult ventricular cardiomyocytes (NVCMs and AVCMs) and in a chronic rabbit model of DAU-induced HF. Using NVCMs, we found significant cytotoxicity of both PIs around their maximum plasma concentration (cmax) as well as significant augmentation of DAU cytotoxicity. In AVCMs, BTZ did not induce significant cytotoxicity in therapeutic concentrations, whereas the toxicity of CFZ was significant and more profound. Importantly, neither PI significantly augmented the cardiotoxicity of DAU despite even more profound proteasome-inhibitory activity in AVCMs compared with NVCMs. Furthermore, in young adult rabbits, no significant augmentation of chronic ANT cardiotoxicity was noted with respect to any functional, morphological, biochemical or molecular parameter under study, despite significant inhibition of myocardial proteasome activity. Our experimental data show that combination of PIs with ANTs is not accompanied by an exaggerated risk of cardiotoxicity and HF in young adult animal cardiomyocytes and hearts.


Asunto(s)
Antraciclinas/toxicidad , Antineoplásicos/toxicidad , Cardiotoxicidad/etiología , Inhibidores de Proteasoma/toxicidad , Animales , Antraciclinas/administración & dosificación , Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidad , Bortezomib/administración & dosificación , Bortezomib/toxicidad , Daunorrubicina/administración & dosificación , Daunorrubicina/toxicidad , Relación Dosis-Respuesta a Droga , Masculino , Miocitos Cardíacos/efectos de los fármacos , Oligopéptidos/administración & dosificación , Oligopéptidos/toxicidad , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/administración & dosificación , Conejos , Ratas , Ratas Wistar
5.
Anal Bioanal Chem ; 411(11): 2383-2394, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30820631

RESUMEN

Solid-phase microextraction (SPME) is an alternative method to dialysis and ultrafiltration for the determination of plasma protein binding (PPB) of drugs. It is particularly advantageous for complicated analytes where standard methods are not applicable. Di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) is a lead compound of novel thiosemicarbazone anti-cancer drugs, which entered clinical trials in 2016. However, this agent exhibited non-specific binding on filtration membranes and had intrinsic chelation activity, which precluded standard PPB methods. In this study, using a simple and fast procedure, we prepared novel SPME fibers for extraction of DpC based on a metal-free, silicon string support, covered with C18 sorbent. Reproducibility of the preparation process was demonstrated by the percent relative standard deviation (RSD) of ≤ 9.2% of the amount of DpC extracted from PBS by several independently prepared fibers. The SPME procedure was optimized by evaluating extraction and desorption time profiles. Suitability of the optimized protocol was verified by examining reproducibility, linearity, and recovery of DpC extracted from PBS or plasma. All samples extracted by SPME were analyzed using an optimized and validated UHPLC-MS/MS method. The developed procedure was applied to the in vitro determination of PPB of DpC at two clinically relevant concentrations (500 and 1000 ng/mL). These studies showed that DpC is highly bound to plasma proteins (PPB ≥ 88%) and this did not differ significantly between both concentrations tested. This investigation provides novel data in the applicability of SPME for the determination of PPB of chelators, as well as useful information for the clinical development of DpC. Graphical abstract.


Asunto(s)
Antineoplásicos/metabolismo , Proteínas Sanguíneas/metabolismo , Piridinas/metabolismo , Microextracción en Fase Sólida/instrumentación , Tiosemicarbazonas/metabolismo , Adsorción , Animales , Bovinos , Cromatografía Líquida de Alta Presión/métodos , Diseño de Equipo , Unión Proteica , Ratas , Silicio/química , Microextracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos
6.
J Pharmacol Exp Ther ; 364(3): 433-446, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29273587

RESUMEN

Dexrazoxane (DEX), the only cardioprotectant approved against anthracycline cardiotoxicity, has been traditionally deemed to be a prodrug of the iron-chelating metabolite ADR-925. However, pharmacokinetic profile of both agents, particularly with respect to the cells and tissues essential for its action (cardiomyocytes/myocardium), remains poorly understood. The aim of this study is to characterize the conversion and disposition of DEX to ADR-925 in vitro (primary cardiomyocytes) and in vivo (rabbits) under conditions where DEX is clearly cardioprotective against anthracycline cardiotoxicity. Our results show that DEX is hydrolyzed to ADR-925 in cell media independently of the presence of cardiomyocytes or their lysate. Furthermore, ADR-925 directly penetrates into the cells with contribution of active transport, and detectable concentrations occur earlier than after DEX incubation. In rabbits, ADR-925 was detected rapidly in plasma after DEX administration to form sustained concentrations thereafter. ADR-925 was not markedly retained in the myocardium, and its relative exposure was 5.7-fold lower than for DEX. Unlike liver tissue, myocardium homogenates did not accelerate the conversion of DEX to ADR-925 in vitro, suggesting that myocardial concentrations in vivo may originate from its distribution from the central compartment. The pharmacokinetic parameters for both DEX and ADR-925 were determined by both noncompartmental analyses and population pharmacokinetics (including joint parent-metabolite model). Importantly, all determined parameters were closer to human than to rodent data. The present results open venues for the direct assessment of the cardioprotective effects of ADR-925 in vitro and in vivo to establish whether DEX is a drug or prodrug.


Asunto(s)
Cardiotónicos/farmacocinética , Dexrazoxano/farmacocinética , Etilenodiaminas/farmacocinética , Glicina/análogos & derivados , Miocitos Cardíacos/metabolismo , Animales , Cardiotónicos/sangre , Cardiotónicos/metabolismo , Cardiotónicos/farmacología , Dexrazoxano/sangre , Dexrazoxano/metabolismo , Dexrazoxano/orina , Etilenodiaminas/metabolismo , Glicina/metabolismo , Glicina/farmacocinética , Conejos , Ratas , Distribución Tisular
7.
Chem Res Toxicol ; 31(11): 1151-1163, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30395451

RESUMEN

Salicylaldehyde isonicotinoyl hydrazone (SIH) is a small molecule and lipophilic chelating agent that firmly binds ferric ions from the cellular labile iron pool and is able to protect various tissues against oxidative damage. Previously, SIH possessed the best ratio of cytoprotective efficiency to toxicity among various iron chelators, including the desferrioxamine, deferiprone, and deferasirox used in clinical practice. Here, we prepared a series of 2,6-dihydroxybenzaldehyde aroylhydrazones as SIH analogues with an additional hydroxyl group that can be involved in the chelation of metal ions. Compound JK-31 (2,6-dihydroxybenzaldehyde 4-chlorobenzohydrazone) showed the best cytoprotective efficiency among the studied compounds including SIH. This compound significantly protected H9c2 cardiomyoblast cells against oxidative stress induced by various pro-oxidants, such as hydrogen peroxide, tert-butyl hydroperoxide, paraquat, epinephrine, N-acetyl- p-benzoquinone imine (a toxic metabolite of paracetamol), and 6-hydroxydopamine. The exceptional cytoprotective activity of JK-31 was confirmed using epifluorescence microscopy, where JK-31-treated H9c2 cells maintained a higher mitochondrial inner membrane potential in the presence of a lethal dose of hydrogen peroxide than was observed with cells treated with SIH. Hence, this study demonstrates the deleterious role of free iron ions in oxidative injury and the potential of 2,6-dihydroxybenzaldehyde aroylhydrazones in the prevention of various types of cardiac injuries, highlighting the need for further investigations into these compounds.


Asunto(s)
Aldehídos/química , Benzaldehídos/química , Hidrazonas/química , Quelantes del Hierro/química , Estrés Oxidativo , Aldehídos/farmacología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estabilidad de Medicamentos , Humanos , Hidrazonas/farmacología , Hidrólisis , Quelantes del Hierro/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Ratas
8.
Chem Res Toxicol ; 31(6): 435-446, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29766723

RESUMEN

Aroylhydrazone iron chelators such as salicylaldehyde isonicotinoyl hydrazone (SIH) protect various cells against oxidative injury and display antineoplastic activities. Previous studies have shown that a nitro-substituted hydrazone, namely, NHAPI, displayed markedly improved plasma stability, selective antitumor activity, and moderate antioxidant properties. In this study, we prepared four series of novel NHAPI derivatives and explored their iron chelation activities, anti- or pro-oxidant effects, protection against model oxidative injury in the H9c2 cell line derived from rat embryonic cardiac myoblasts, cytotoxicities to the corresponding noncancerous H9c2 cells, and antiproliferative activities against the MCF-7 human breast adenocarcinoma and HL-60 human promyelocytic leukemia cell lines. Nitro substitution had both negative and positive effects on the examined properties, and we identified new structure-activity relationships. Naphthyl and biphenyl derivatives showed selective antiproliferative action, particularly in the breast adenocarcinoma MCF-7 cell line, where they exceeded the selectivity of the parent compound NHAPI. Of particular interest is a compound prepared from 2-hydroxy-5-methyl-3-nitroacetophenone and biphenyl-4-carbohydrazide, which protected cardiomyoblasts against oxidative injury at 1.8 ± 1.2 µM with 24-fold higher selectivity than SIH. These compounds will serve as leads for further structural optimization and mechanistic studies.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Hidrazonas/farmacología , Quelantes del Hierro/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/toxicidad , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/toxicidad , Línea Celular Tumoral , Estabilidad de Medicamentos , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Hidrazonas/toxicidad , Quelantes del Hierro/síntesis química , Quelantes del Hierro/química , Quelantes del Hierro/toxicidad , Radioisótopos de Hierro , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Ratas , Relación Estructura-Actividad
9.
J Mol Cell Cardiol ; 91: 92-103, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26724189

RESUMEN

Dexrazoxane (DEX) is a clinically available cardioprotectant that reduces the toxicity induced by anthracycline (ANT) anticancer drugs; however, DEX is seldom used and its action is poorly understood. Inorganic nitrate/nitrite has shown promising results in myocardial ischemia-reperfusion injury and recently in acute high-dose ANT cardiotoxicity. However, the utility of this approach for overcoming clinically more relevant chronic forms of cardiotoxicity remains elusive. Hence, in this study, the protective potential of inorganic nitrate and nitrite against chronic ANT cardiotoxicity was investigated, and the results were compared to those using DEX. Chronic cardiotoxicity was induced in rabbits with daunorubicin (DAU). Sodium nitrate (1g/L) was administered daily in drinking water, while sodium nitrite (0.15 or 5mg/kg) or DEX (60mg/kg) was administered parenterally before each DAU dose. Although oral nitrate induced a marked increase in plasma NOx, it showed no improvement in DAU-induced mortality, myocardial damage or heart failure. Instead, the higher nitrite dose reduced the incidence of end-stage cardiotoxicity, prevented related premature deaths and significantly ameliorated several molecular and cellular perturbations induced by DAU, particularly those concerning mitochondria. The latter result was also confirmed in vitro. Nevertheless, inorganic nitrite failed to prevent DAU-induced cardiac dysfunction and molecular remodeling in vivo and failed to overcome the cytotoxicity of DAU to cardiomyocytes in vitro. In contrast, DEX completely prevented all of the investigated molecular, cellular and functional perturbations that were induced by DAU. Our data suggest that the difference in cardioprotective efficacy between DEX and inorganic nitrite may be related to their different abilities to address a recently proposed upstream target for ANT in the heart - topoisomerase IIß.


Asunto(s)
Cardiotónicos/farmacología , Cardiotoxicidad/prevención & control , Dexrazoxano/farmacología , Nitratos/farmacología , Nitrito de Sodio/farmacología , Animales , Antibióticos Antineoplásicos/efectos adversos , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Daunorrubicina/efectos adversos , Esquema de Medicación , Infusiones Intravenosas , Masculino , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Conejos
10.
Exp Cell Res ; 339(2): 174-86, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26515555

RESUMEN

Due to their cardiac origin, H9c2 cells rank among the most popular cell lines in current cardiovascular research, yet molecular phenotype remains elusive. Hence, in this study we used proteomic approach to describe molecular phenotype of H9c2 cells in their undifferentiated (i.e., most frequently used) state, and its functional response to cardiotoxic drug doxorubicin. Of 1671 proteins identified by iTRAQ IEF/LC-MSMS analysis, only 12 proteins were characteristic for striated muscle cells and none was cardiac phenotype-specific. Targeted LC-SRM and western blot analyses confirmed that undifferentiated H9c2 cells are phenotypically considerably different to both primary neonatal cardiomyocytes and adult myocardium. These cells lack proteins essential for formation of striated muscle myofibrils or they express only minor amounts thereof. They also fail to express many proteins important for metabolism of muscle cells. The challenge with clinically relevant concentrations of doxorubicin did not induce a proteomic signature that has been previously noted in primary cardiomyocytes or adult hearts. Instead, several alterations previously described in other cells of mesodermal origin, such as fibroblasts, were observed (e.g., severe down-regulation of collagen synthesis pathway). In conclusion, the molecular phenotype of H9c2 cells resembles very immature myogenic cells with skeletal muscle commitment upon differentiation and thus, translatability of findings obtained in these cells deserves caution.


Asunto(s)
Doxorrubicina/toxicidad , Miocardio/citología , Proteoma/análisis , Animales , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Miocardio/metabolismo , Fenotipo , Ratas , Relación Estructura-Actividad
11.
Org Biomol Chem ; 13(20): 5608-12, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25881971

RESUMEN

A synthesis procedure for heteroatom-substituted tetra(3,4-pyrido)porphyrazines that absorb light near 800 nm was developed. Based on the observed relationships between the structure and photophysical parameters, a novel highly photodynamically active (IC50 = 0.26 µM) compound was synthesized and biologically characterized.


Asunto(s)
Luz , Compuestos Macrocíclicos/química , Fotoquímica , Porfirinas/química , Estructura Molecular , Espectroscopía Infrarroja Corta , Relación Estructura-Actividad
12.
Biomed Chromatogr ; 28(5): 621-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24254882

RESUMEN

Novel thiosemicarbazone metal chelators are extensively studied anti-cancer agents with marked and selective activity against a wide variety of cancer cells, as well as human tumor xenografts in mice. This study describes the first validated LC-MS/MS method for the simultaneous quantification of 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and its main metabolites (E/Z isomers of the semicarbazone structure, M1-E and M1-Z, and the amidrazone metabolite, M2) in plasma. Separation was achieved using a C18 column with ammonium formate/acetonitrile mixture as the mobile phase. Plasma samples were treated using solid-phase extraction on 96-well plates. This method was validated over the concentration range of 0.18-2.80 µM for Bp4eT, 0.02-0.37 µM for both M1-E and M1-Z, and 0.10-1.60 µM for M2. This methodology was applied to the analysis of samples from in vivo experiments, allowing for the concentration-time profile to be simultaneously assessed for the parent drug and its metabolites. The current study addresses the lack of knowledge regarding the quantitative analysis of thiosemicarbazone anti-cancer drugs and their metabolites in plasma and provides the first pharmacokinetic data on a lead compound of this class.


Asunto(s)
Antineoplásicos/sangre , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Tiosemicarbazonas/sangre , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Masculino , Proyectos Piloto , Ratas , Ratas Wistar , Tiosemicarbazonas/metabolismo , Tiosemicarbazonas/farmacocinética
13.
Toxicol Sci ; 198(2): 288-302, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38290791

RESUMEN

Anthracyclines, such as doxorubicin (adriamycin), daunorubicin, or epirubicin, rank among the most effective agents in classical anticancer chemotherapy. However, cardiotoxicity remains the main limitation of their clinical use. Topoisomerase IIß has recently been identified as a plausible target of anthracyclines in cardiomyocytes. We examined the putative topoisomerase IIß selective agent XK469 as a potential cardioprotective and designed several new analogs. In our experiments, XK469 inhibited both topoisomerase isoforms (α and ß) and did not induce topoisomerase II covalent complexes in isolated cardiomyocytes and HL-60, but induced proteasomal degradation of topoisomerase II in these cell types. The cardioprotective potential of XK469 was studied on rat neonatal cardiomyocytes, where dexrazoxane (ICRF-187), the only clinically approved cardioprotective, was effective. Initially, XK469 prevented daunorubicin-induced toxicity and p53 phosphorylation in cardiomyocytes. However, it only partially prevented the phosphorylation of H2AX and did not affect DNA damage measured by Comet Assay. It also did not compromise the daunorubicin antiproliferative effect in HL-60 leukemic cells. When administered to rabbits to evaluate its cardioprotective potential in vivo, XK469 failed to prevent the daunorubicin-induced cardiac toxicity in either acute or chronic settings. In the following in vitro analysis, we found that prolonged and continuous exposure of rat neonatal cardiomyocytes to XK469 led to significant toxicity. In conclusion, this study provides important evidence on the effects of XK469 and its combination with daunorubicin in clinically relevant doses in cardiomyocytes. Despite its promising characteristics, long-term treatments and in vivo experiments have not confirmed its cardioprotective potential.


Asunto(s)
Antraciclinas , Quinoxalinas , Inhibidores de Topoisomerasa II , Ratas , Animales , Conejos , Inhibidores de Topoisomerasa II/toxicidad , Inhibidores de Topoisomerasa II/uso terapéutico , Antraciclinas/toxicidad , Antraciclinas/uso terapéutico , Cardiotoxicidad , Daunorrubicina/toxicidad , Daunorrubicina/uso terapéutico , Doxorrubicina/toxicidad , Antibióticos Antineoplásicos/toxicidad , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/uso terapéutico , Daño del ADN
14.
Protein Sci ; 32(12): e4819, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37883077

RESUMEN

Ferritin, a naturally occurring iron storage protein, has gained significant attention as a drug delivery platform due to its inherent biocompatibility and capacity to encapsulate therapeutic agents. In this study, we successfully genetically engineered human H ferritin by incorporating 4 or 6 tryptophan residues per subunit, strategically oriented towards the inner cavity of the nanoparticle. This modification aimed to enhance the encapsulation of hydrophobic drugs into the ferritin cage. Comprehensive characterization of the mutants revealed that only the variant carrying four tryptophan substitutions per subunit retained the ability to disassemble and reassemble properly. As a proof of concept, we evaluated the loading capacity of this mutant with ellipticine, a natural hydrophobic indole alkaloid with multimodal anticancer activity. Our data demonstrated that this specific mutant exhibited significantly higher efficiency in loading ellipticine compared to human H ferritin. Furthermore, to evaluate the versatility of this hydrophobicity-enhanced ferritin nanoparticle as a drug carrier, we conducted a comparative study by also encapsulating doxorubicin, a commonly used anticancer drug. Subsequently, we tested both ellipticine and doxorubicin-loaded nanoparticles on a promyelocytic leukemia cell line, demonstrating efficient uptake by these cells and resulting in the expected cytotoxic effect.


Asunto(s)
Antineoplásicos , Elipticinas , Nanopartículas , Humanos , Ferritinas/genética , Ferritinas/química , Apoferritinas/genética , Triptófano , Antineoplásicos/farmacología , Antineoplásicos/química , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Doxorrubicina/farmacología , Doxorrubicina/química , Nanopartículas/química , Interacciones Hidrofóbicas e Hidrofílicas , Línea Celular Tumoral
15.
J Pharmacol Exp Ther ; 343(2): 468-78, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915767

RESUMEN

Anthracycline anticancer drugs (e.g., doxorubicin or daunorubicin) can induce chronic cardiotoxicity and heart failure (HF), both of which are believed to be based on oxidative injury and mitochondrial damage. In this study, molecular and functional changes induced by chronic anthracycline treatment with progression into HF in post-treatment follow-up were analyzed with special emphasis on nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) pathways. Chronic cardiotoxicity was induced in rabbits with daunorubicin (3 mg/kg, weekly for 10 weeks), and the animals were followed for another 10 weeks. Echocardiography revealed a significant drop in left ventricular (LV) systolic function during the treatment with marked progression to LV dilation and congestive HF in the follow-up. Although daunorubicin-induced LV lipoperoxidation was found, it was only loosely associated with cardiac performance. Furthermore, although LV oxidized glutathione content was increased, the oxidized-to-reduced glutathione ratio itself remained unchanged. Neither Nrf2, the master regulator of antioxidant response, nor the majority of its target genes showed up-regulation in the study. However, down-regulation of manganese superoxide dismutase and NAD(P)H dehydrogenase [quinone] 1 were observed together with heme oxygenase 1 up-regulation. Although marked perturbations in mitochondrial functions were found, no induction of PGC1α-controlled mitochondrial biogenesis pathway was revealed. Instead, especially in the post-treatment period, an impaired regulation of this pathway was observed along with down-regulation of the expression of mitochondrial genes. These results imply that global oxidative stress need not be a factor responsible for the development of anthracycline-induced HF, whereas suppression of mitochondrial biogenesis might be involved.


Asunto(s)
Antraciclinas/toxicidad , Antibióticos Antineoplásicos/toxicidad , Cardiopatías/inducido químicamente , Cardiopatías/metabolismo , Mitocondrias Cardíacas/metabolismo , Factor 2 Relacionado con NF-E2/biosíntesis , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Daunorrubicina/farmacología , Ecocardiografía , Glutatión/metabolismo , Pruebas de Función Cardíaca , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa , Sobrevida , Factores de Transcripción/metabolismo , Troponina T/metabolismo
17.
Sci Rep ; 12(1): 9765, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697900

RESUMEN

Labile redox-active iron ions have been implicated in various neurodegenerative disorders, including the Parkinson's disease (PD). Iron chelation has been successfully used in clinical practice to manage iron overload in diseases such as thalassemia major; however, the use of conventional iron chelators in pathological states without systemic iron overload remains at the preclinical investigative level and is complicated by the risk of adverse outcomes due to systemic iron depletion. In this study, we examined three clinically-used chelators, namely, desferrioxamine, deferiprone and deferasirox and compared them with experimental agent salicylaldehyde isonicotinoyl hydrazone (SIH) and its boronate-masked prochelator BSIH for protection of differentiated PC12 cells against the toxicity of catecholamines 6-hydroxydopamine and dopamine and their oxidation products. All the assayed chelating agents were able to significantly reduce the catecholamine toxicity in a dose-dependent manner. Whereas hydrophilic chelator desferrioxamine exerted protection only at high and clinically unachievable concentrations, deferiprone and deferasirox significantly reduced the catecholamine neurotoxicity at concentrations that are within their plasma levels following standard dosage. SIH was the most effective iron chelator to protect the cells with the lowest own toxicity of all the assayed conventional chelators. This favorable feature was even more pronounced in prochelator BSIH that does not chelate iron unless its protective group is cleaved in disease-specific oxidative stress conditions. Hence, this study demonstrated that while iron chelation may have general neuroprotective potential against catecholamine auto-oxidation and toxicity, SIH and BSIH represent promising lead molecules and warrant further studies in more complex animal models.


Asunto(s)
Quelantes del Hierro , Sobrecarga de Hierro , Animales , Catecolaminas/farmacología , Deferasirox/farmacología , Deferiprona/farmacología , Deferoxamina/farmacología , Dopamina/farmacología , Hierro/farmacología , Quelantes del Hierro/farmacología , Estrés Oxidativo , Oxidopamina/farmacología , Células PC12 , Ratas
18.
J Mol Cell Cardiol ; 50(5): 849-62, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21284945

RESUMEN

Chronic anthracycline cardiotoxicity is a feared complication of cancer chemotherapy. However, despite several decades of primarily hypothesis-driven research, the molecular basis of this phenomenon remains poorly understood. The aim of this study was to obtain integrative molecular insights into chronic anthracycline cardiotoxicity and the resulting heart failure. Cardiotoxicity was induced in rabbits (daunorubicin 3mg/kg, weekly, 10weeks) and changes in the left ventricular proteome were analyzed by 2D-DIGE. The protein spots with significant changes (p<0.01, >1.5-fold) were identified using MALDI-TOF/TOF. Key data were corroborated by immunohistochemistry, qRT-PCR and enzyme activity determination and compared with functional, morphological and biochemical data. The most important alterations were found in mitochondria - especially in proteins crucial for oxidative phosphorylation, energy channeling, antioxidant defense and mitochondrial stress. Furthermore, the intermediate filament desmin, which interacts with mitochondria, was determined to be distinctly up-regulated and disorganized in its expression pattern. Interestingly, the latter changes reflected the intensity of toxic damage in whole hearts as well as in individual cells. In addition, a marked drop in myosin light chain isoforms, activation of proteolytic machinery (including the proteasome system), increased abundance of chaperones and proteins involved in chaperone-mediated autophagy, membrane repair as well as apoptosis were found. In addition, dramatic changes in proteins of basement membrane and extracellular matrix were documented. In conclusion, for the first time, the complex proteomic signature of chronic anthracycline cardiotoxicity was revealed which enhances our understanding of the basis for this phenomenon and it may enhance efforts in targeting its reduction.


Asunto(s)
Antraciclinas/toxicidad , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Animales , Western Blotting , Daunorrubicina/toxicidad , Ecocardiografía , Electroforesis en Gel Bidimensional , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Inmunohistoquímica , Malondialdehído/metabolismo , Proteínas Mitocondriales/metabolismo , Proteómica , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Troponina I/metabolismo , Vimentina/metabolismo
19.
Chem Res Toxicol ; 24(3): 290-302, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21214215

RESUMEN

Oxidative stress is known to contribute to a number of cardiovascular pathologies. Free intracellular iron ions participate in the Fenton reaction and therefore substantially contribute to the formation of highly toxic hydroxyl radicals and cellular injury. Earlier work on the intracellular iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH) has demonstrated its considerable promise as an agent to protect the heart against oxidative injury both in vitro and in vivo. However, the major limitation of SIH is represented by its labile hydrazone bond that makes it prone to plasma hydrolysis. Hence, in order to improve the hydrazone bond stability, nine compounds were prepared by a substitution of salicylaldehyde by the respective methyl- and ethylketone with various electron donors or acceptors in the phenyl ring. All the synthesized aroylhydrazones displayed significant iron-chelating activities and eight chelators showed significantly higher stability in rabbit plasma than SIH. Furthermore, some of these chelators were observed to possess higher cytoprotective activities against oxidative injury and/or lower toxicity as compared to SIH. The results of the present study therefore indicate the possible applicability of several of these novel agents in the prevention and/or treatment of cardiovascular disorders with a known (or presumed) role of oxidative stress. In particular, the methylketone HAPI and nitro group-containing NHAPI merit further in vivo investigations.


Asunto(s)
Aldehídos/química , Antioxidantes/química , Hidrazonas/química , Quelantes del Hierro/síntesis química , Aldehídos/sangre , Aldehídos/farmacología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Línea Celular , Estabilidad de Medicamentos , Hidrazonas/sangre , Hidrazonas/farmacología , Hidrólisis , Radical Hidroxilo/toxicidad , Quelantes del Hierro/metabolismo , Quelantes del Hierro/farmacología , Estrés Oxidativo , Conejos , Ratas
20.
Arch Toxicol ; 85(5): 525-35, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21046361

RESUMEN

The clinical usefulness of anthracycline antineoplastic drugs is limited by their cardiotoxicity. Its mechanisms have not been fully understood, although the induction of oxidative stress is widely believed to play the principal role. Glutathione is the dominant cellular antioxidant, while glutathione peroxidase (GPx) together with glutathione reductase (GR) constitutes the major enzymatic system protecting the cardiac cells from oxidative damage. Therefore, this study aimed to assess their roles in anthracycline cardiotoxicity. Ten-week intravenous administration of daunorubicin (DAU, 3 mg/kg weekly) to rabbits induced heart failure, which was evident from decreased left ventricular ejection fraction and release of cardiac troponins to circulation. However, no significant changes in either total or oxidized glutathione contents or GR activity were detected in left ventricular tissue of DAU-treated rabbits when compared with control animals. GPx activity in the cardiac tissue significantly increased. In H9c2 rat cardiac cells, 24-h DAU exposure (0.1-10 µM) induced significant dose-dependent toxicity. Cellular content of reduced glutathione was insignificantly decreased, oxidized glutathione and GR activity were unaffected, and GPx activity was significantly increased. Neither buthionine sulfoximine (BSO, glutathione biosynthesis inhibitor) nor 2-oxo-4-thiazolidine-carboxylic acid (OTC, glutathione biosynthetic precursor) had significant effects on DAU cytotoxicity. This contrasted with model oxidative injury induced by hydrogen peroxide, which cytotoxicity was increased by BSO and decreased by OTC. In conclusion, our results suggest that the dysfunction of glutathione antioxidant system does not play a causative role in anthracycline cardiotoxicity.


Asunto(s)
Antioxidantes/farmacología , Daunorrubicina/efectos adversos , Glutatión/farmacología , Cardiopatías/inducido químicamente , Animales , Antibióticos Antineoplásicos , Butionina Sulfoximina/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Corazón/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Masculino , Modelos Animales , Estrés Oxidativo/efectos de los fármacos , Ácido Pirrolidona Carboxílico/metabolismo , Conejos , Ratas , Tiazolidinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA