RESUMEN
CRISPR-based genome editing enables permanent suppression of angiogenic factors such as vascular endothelial growth factor (VEGF) as a potential treatment for choroidal neovascularization (CNV)-a major cause of blindness in age-related macular degeneration. We previously designed adeno-associated viral (AAV) vectors with S. pyogenes Cas 9 (SpCas9) and guide RNAs (gRNAs) to target conserved sequences in VEGFA across mouse, rhesus macaque, and human, with successful suppression of VEGF and laser-induced CNV in mice. Here, we advanced the platform to nonhuman primates and found that subretinal AAV8-SpCas9 with gRNAs targeting VEGFA may reduce VEGF and CNV severity as compared with SpCas9 without gRNAs. However, all eyes that received AAV8-SpCas9 regardless of gRNA presence developed subfoveal deposits, concentric macular rings, and outer retinal disruption that worsened at higher dose. Immunohistochemistry showed subfoveal accumulation of retinal pigment epithelial cells, collagen, and vimentin, disrupted photoreceptor structure, and retinal glial and microglial activation. Subretinal AAV8-SpCas9 triggered aqueous elevations in CCL2, but minimal systemic humoral or cellular responses against AAV8, SpCas9, or GFP reporter. Our findings suggest that CRISPR-mediated VEGFA ablation in nonhuman primate eyes may suppress VEGF and CNV, but can also lead to unexpected subretinal fibrosis, photoreceptor damage, and retinal inflammation despite minimal systemic immune responses.
RESUMEN
Purpose: Choroidal vascular changes occur with normal aging and age-related macular degeneration (AMD). Here, we evaluate choroidal thickness and vascularity in aged rhesus macaques to better understand the choroid's role in this nonhuman primate model of AMD. Methods: We analyzed optical coherence tomography (OCT) images of 244 eyes from 122 rhesus macaques (aged 4-32 years) to measure choroidal thickness (CT) and choroidal vascularity index (CVI). Drusen number, size, and volume were measured by semiautomated annotation and segmentation of OCT images. We performed regression analyses to determine any association of CT or CVI with age, sex, and axial length and to determine if the presence and volume of soft drusen impacted these choroidal parameters. Results: In rhesus macaques, subfoveal CT decreased with age at 3.2 µm/y (R2 = 0.481, P < 0.001), while CVI decreased at 0.66% per year (R2 = 0.257, P < 0.001). Eyes with soft drusen exhibited thicker choroid (179.9 ± 17.5 µm vs. 162.0 ± 27.9 µm, P < 0.001) and higher CVI (0.612 ± 0.051 vs. 0.577 ± 0.093, P = 0.005) than age-matched control animals. Neither CT or CVI appeared to be associated with drusen number, size, or volume in this cohort. However, some drusen in macaques were associated with underlying choroidal vessel enlargement resembling pachydrusen in human patients with AMD. Conclusions: Changes in the choroidal vasculature in rhesus macaques resemble choroidal changes in human aging, but eyes with drusen exhibit choroidal thickening, increased vascularity, and phenotypic characteristics of pachydrusen observed in some patients with AMD.
Asunto(s)
Degeneración Macular , Drusas Retinianas , Humanos , Animales , Macaca mulatta , Estudios Retrospectivos , Retina , Coroides/irrigación sanguínea , Envejecimiento , Tomografía de Coherencia Óptica/métodosRESUMEN
Purpose: Foveoschisis involves the pathologic splitting of retinal layers at the fovea, which may occur congenitally in X-linked retinoschisis (XLRS) or as an acquired complication of myopia. XLRS is attributed to functional loss of the retinal adhesion protein retinoschisin 1 (RS1), but the pathophysiology of myopic foveoschisis is unclear due to the lack of animal models. Here, we characterized a novel nonhuman primate model of myopic foveoschisis through clinical examination and multimodal imaging followed by morphologic, cellular, and transcriptional profiling of retinal tissues and genetic analysis. Methods: We identified a rhesus macaque with behavioral and anatomic features of myopic foveoschisis, and monitored disease progression over 14 months by fundus photography, fluorescein angiography, and optical coherence tomography (OCT). After necropsy, we evaluated anatomic and cellular changes by immunohistochemistry and transcriptomic changes using single-nuclei RNA-sequencing (snRNA-seq). Finally, we performed Sanger and whole exome sequencing with focus on the RS1 gene. Results: Affected eyes demonstrated posterior hyaloid traction and progressive splitting of the outer plexiform layer on OCT. Immunohistochemistry showed increased GFAP expression in Müller glia and loss of ramified Iba-1+ microglia, suggesting macro- and microglial activation with minimal photoreceptor alterations. SnRNA-seq revealed gene expression changes predominantly in cones and retinal ganglion cells involving chromatin modification, suggestive of cellular stress at the fovea. No defects in the RS1 gene or its expression were detected. Conclusions: This nonhuman primate model of foveoschisis reveals insights into how acquired myopic traction leads to phenotypically similar morphologic and cellular changes as congenital XLRS without alterations in RS1.
Asunto(s)
Miopía Degenerativa , Retinosquisis , Animales , Macaca mulatta , Retina , Fóvea Central , Tomografía de Coherencia ÓpticaRESUMEN
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genomic disruption of vascular endothelial growth factor A (Vegfa) with a single gRNA suppresses choroidal neovascularization (CNV) in preclinical studies, offering the prospect of long-term anti-angiogenesis therapy for neovascular age-related macular degeneration (AMD). Genome editing using CRISPR-CRISPR-associated endonucleases (Cas9) with multiple guide RNAs (gRNAs) can enhance gene-ablation efficacy by augmenting insertion-deletion (indel) mutations with gene truncations but may also increase the risk of off-target effects. In this study, we compare the effectiveness of adeno-associated virus (AAV)-mediated CRISPR-Cas9 systems using single versus paired gRNAs to target two different loci in the Vegfa gene that are conserved in human, rhesus macaque, and mouse. Paired gRNAs increased Vegfa gene-ablation rates in human cells in vitro but did not enhance VEGF suppression in mouse eyes in vivo. Genome editing using paired gRNAs also showed a similar degree of CNV suppression compared with single-gRNA systems. Unbiased genome-wide analysis using genome-wide unbiased identification of double-stranded breaks (DSBs) enabled by sequencing (GUIDE-seq) revealed weak off-target activity arising from the second gRNA. These findings suggest that in vivo CRISPR-Cas9 genome editing using two gRNAs may increase gene ablation but also the potential risk of off-target mutations, while the functional benefit of targeting an additional locus in the Vegfa gene as treatment for neovascular retinal conditions is unclear.
RESUMEN
The suprachoroid is a potential space located between the sclera and choroid of the eye, which provides a novel route for ocular drug or viral vector delivery. Suprachoroidal injection of adeno-associated virus (AAV)8 using transscleral microneedles enables widespread transgene expression in eyes of nonhuman primates, but may cause intraocular inflammation. We characterized the host humoral and cellular immune responses after suprachoroidal delivery of AAV8 expressing green fluorescent protein (GFP) in rhesus macaques, and found that it can induce mild chorioretinitis that resolves after systemic corticosteroid administration, with recovery of photoreceptor morphology, but persistent immune cell infiltration after 3 months, corresponding to a loss of GFP expression from retinal pigment epithelial cells, but persistent expression in scleral fibroblasts. Suprachoroidal AAV8 triggered B cell and T cell responses against GFP, but only mild antibody responses to the viral capsid compared to intravitreal injections of the same vector and dose. Systemic biodistribution studies showed lower AAV8 levels in liver and spleen after suprachoroidal injection compared with intravitreal delivery. Our findings suggest that suprachoroidal AAV8 primarily triggers host immune responses to GFP, likely due to sustained transgene expression in scleral fibroblasts outside the blood-retinal barrier, but elicits less humoral immune reactivity to the viral capsid than intravitreal delivery due to lower egress into systemic circulation. As GFP is not native to primates and not a clinically relevant transgene, suprachoroidal AAV delivery of human transgenes may have significant translational potential for retinal gene therapy.
Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Vectores Genéticos/genética , Inmunidad , Macaca mulatta , Distribución TisularRESUMEN
Among genome engineering tools, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based approaches have been widely adopted for translational studies due to their robustness, precision, and ease of use. When delivered to diseased tissues with a viral vector such as adeno-associated virus, direct genome editing can be efficiently achieved in vivo to treat different ophthalmic conditions. While CRISPR has been actively explored as a strategy for treating inherited retinal diseases, with the first human trial recently initiated, its applications for complex, multifactorial conditions such as ocular angiogenesis has been relatively limited. Currently, neovascular retinal diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration, which together constitute the majority of blindness in developed countries, are managed with frequent and costly injections of anti-vascular endothelial growth factor (anti-VEGF) agents that are short-lived and burdensome for patients. By contrast, CRISPR technology has the potential to suppress angiogenesis permanently, with the added benefit of targeting intracellular signals or regulatory elements, cell-specific delivery, and multiplexing to disrupt different pro-angiogenic factors simultaneously. However, the prospect of permanently suppressing physiologic pathways, the unpredictability of gene editing efficacy, and concerns for off-target effects have limited enthusiasm for these approaches. Here, we review the evolution of gene therapy and advances in adapting CRISPR platforms to suppress retinal angiogenesis. We discuss different Cas9 orthologs, delivery strategies, and different genomic targets including VEGF, VEGF receptor, and HIF-1α, as well as the advantages and disadvantages of genome editing vs. conventional gene therapies for multifactorial disease processes as compared to inherited monogenic retinal disorders. Lastly, we describe barriers that must be overcome to enable effective adoption of CRISPR-based strategies for the management of ocular angiogenesis.