Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Infect Dis ; 78(4): 889-899, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37879096

RESUMEN

BACKGROUND: Numerous prognostic scores have been published to support risk stratification for patients with coronavirus disease 2019 (COVID-19). METHODS: We performed a systematic review to identify the scores for confirmed or clinically assumed COVID-19 cases. An in-depth assessment and risk of bias (ROB) analysis (Prediction model Risk Of Bias ASsessment Tool [PROBAST]) was conducted for scores fulfilling predefined criteria ([I] area under the curve [AUC)] ≥ 0.75; [II] a separate validation cohort present; [III] training data from a multicenter setting [≥2 centers]; [IV] point-scale scoring system). RESULTS: Out of 1522 studies extracted from MEDLINE/Web of Science (20/02/2023), we identified 242 scores for COVID-19 outcome prognosis (mortality 109, severity 116, hospitalization 14, long-term sequelae 3). Most scores were developed using retrospective (75.2%) or single-center (57.1%) cohorts. Predictor analysis revealed the primary use of laboratory data and sociodemographic information in mortality and severity scores. Forty-nine scores were included in the in-depth analysis. The results indicated heterogeneous quality and predictor selection, with only five scores featuring low ROB. Among those, based on the number and heterogeneity of validation studies, only the 4C Mortality Score can be recommended for clinical application so far. CONCLUSIONS: The application and translation of most existing COVID scores appear unreliable. Guided development and predictor selection would have improved the generalizability of the scores and may enhance pandemic preparedness in the future.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Pronóstico , Estudios Retrospectivos , Medición de Riesgo , Progresión de la Enfermedad , Sesgo , Estudios Multicéntricos como Asunto
2.
Eur J Neurosci ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39210746

RESUMEN

Exposure to infectious or non-infectious immune activation during early development is a serious risk factor for long-term behavioural dysfunctions. Mouse models of maternal immune activation (MIA) have increasingly been used to address neuronal and behavioural dysfunctions in response to prenatal infections. One commonly employed MIA model involves administering poly(I:C) (polyriboinosinic-polyribocytdilic acid), a synthetic analogue of double-stranded RNA, during gestation, which robustly induces an acute viral-like inflammatory response. Using electroencephalography (EEG) and infrared (IR) activity recordings, we explored alterations in sleep/wake, circadian and locomotor activity patterns on the adult male offspring of poly(I:C)-treated mothers. Our findings demonstrate that these offspring displayed reduced home cage activity during the (subjective) night under both light/dark or constant darkness conditions. In line with this finding, these mice exhibited an increase in non-rapid eye movement (NREM) sleep duration as well as an increase in sleep spindles density. Following sleep deprivation, poly(I:C)-exposed offspring extended NREM sleep duration and prolonged NREM sleep bouts during the dark phase as compared with non-exposed mice. Additionally, these mice exhibited a significant alteration in NREM sleep EEG spectral power under heightened sleep pressure. Together, our study highlights the lasting effects of infection and/or immune activation during pregnancy on circadian activity and sleep/wake patterns in the offspring.

3.
Infection ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587752

RESUMEN

PURPOSE: The objective examination of the Post-COVID syndrome (PCS) remains difficult due to heterogeneous definitions and clinical phenotypes. The aim of the study was to verify the functionality and correlates of a recently developed PCS score. METHODS: The PCS score was applied to the prospective, multi-center cross-sectoral cohort (in- and outpatients with SARS-CoV-2 infection) of the "National Pandemic Cohort Network (NAPKON, Germany)". Symptom assessment and patient-reported outcome measure questionnaires were analyzed at 3 and 12 months (3/12MFU) after diagnosis. Scores indicative of PCS severity were compared and correlated to demographic and clinical characteristics as well as quality of life (QoL, EQ-5D-5L). RESULTS: Six hundred three patients (mean 54.0 years, 60.6% male, 82.0% hospitalized) were included. Among those, 35.7% (215) had no and 64.3% (388) had mild, moderate, or severe PCS. PCS severity groups differed considering sex and pre-existing respiratory diseases. 3MFU PCS worsened with clinical severity of acute infection (p = .011), and number of comorbidities (p = .004). PCS severity was associated with poor QoL at the 3MFU and 12MFU (p < .001). CONCLUSION: The PCS score correlated with patients' QoL and demonstrated to be instructive for clinical characterization and stratification across health care settings. Further studies should critically address the high prevalence, clinical relevance, and the role of comorbidities. TRAIL REGISTRATION NUMBER: The cohort is registered at www. CLINICALTRIALS: gov under NCT04768998.

4.
Infection ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700656

RESUMEN

PURPOSE: The influence of new SARS-CoV-2 variants on the post-COVID-19 condition (PCC) remains unanswered. Therefore, we examined the prevalence and predictors of PCC-related symptoms in patients infected with the SARS-CoV-2 variants delta or omicron. METHODS: We compared prevalences and risk factors of acute and PCC-related symptoms three months after primary infection (3MFU) between delta- and omicron-infected patients from the Cross-Sectoral Platform of the German National Pandemic Cohort Network. Health-related quality of life (HrQoL) was determined by the EQ-5D-5L index score and trend groups were calculated to describe changes of HrQoL between different time points. RESULTS: We considered 758 patients for our analysis (delta: n = 341; omicron: n = 417). Compared with omicron patients, delta patients had a similar prevalence of PCC at the 3MFU (p = 0.354), whereby fatigue occurred most frequently (n = 256, 34%). HrQoL was comparable between the groups with the lowest EQ-5D-5L index score (0.75, 95% CI 0.73-0.78) at disease onset. While most patients (69%, n = 348) never showed a declined HrQoL, it deteriorated substantially in 37 patients (7%) from the acute phase to the 3MFU of which 27 were infected with omicron. CONCLUSION: With quality-controlled data from a multicenter cohort, we showed that PCC is an equally common challenge for patients infected with the SARS-CoV-2 variants delta and omicron at least for the German population. Developing the EQ-5D-5L index score trend groups showed that over two thirds of patients did not experience any restrictions in their HrQoL due to or after the SARS-CoV-2 infection at the 3MFU. CLINICAL TRAIL REGISTRATION: The cohort is registered at ClinicalTrials.gov since February 24, 2021 (Identifier: NCT04768998).

5.
Cereb Cortex ; 33(5): 2273-2286, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36857721

RESUMEN

Prenatal exposure to infectious or noninfectious immune activation is an environmental risk factor for neurodevelopmental disorders and mental illnesses. Recent research using animal models suggests that maternal immune activation (MIA) during early to middle stages of pregnancy can induce transgenerational effects on brain and behavior, likely via inducing stable epigenetic modifications across generations. Using a mouse model of viral-like MIA, which is based on gestational treatment with poly(I:C), the present study explored whether transgenerational effects can also emerge when MIA occurs in late pregnancy. Our findings demonstrate that the direct descendants born to poly(I:C)-treated mothers display deficits in temporal order memory, which are similarly present in second- and third-generation offspring. These transgenerational effects were mediated via both the maternal and paternal lineages and were accompanied by transient changes in maternal care. In addition to the cognitive effects, late prenatal immune activation induced generation-spanning effects on the prefrontal expression of gamma-aminobutyric acid (GABA)ergic genes, including parvalbumin and distinct alpha-subunits of the GABAA receptor. Together, our results suggest that MIA in late pregnancy has the potential to affect cognitive functions and prefrontal gene expression patterns in multiple generations, highlighting its role in shaping disease risk across generations.


Asunto(s)
Encéfalo , Cognición , Fenómenos del Sistema Inmunológico , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Embarazo , Modelos Animales de Enfermedad , Epigénesis Genética , Poli I-C , Ratones
6.
Can J Anaesth ; 71(3): 378-389, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38429621

RESUMEN

PURPOSE: There is evidence that cholinergic imbalance secondary to neuroinflammation plays a role in the pathophysiology of sepsis-associated encephalopathy (SAE). Blood acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities have been proposed as surrogate parameters for the cholinergic function of the central nervous system. Viral sepsis is associated with systemic inflammation and BChE has been reported to be of prognostic value in a small cohort of COVID-19 patients. Nevertheless, the prognostic value of AChE in patients with viral sepsis remains unclear. METHODS: We investigated the role of AChE and BChE activities as prognostic biomarkers of SAE and mortality in patients with viral vs nonviral sepsis enrolled in two prospective cohort studies. We quantified the AChE and BChE activities in whole blood of patients at two time points in the acute phase of viral sepsis (N = 108) and compared them with the activities in patients with nonviral sepsis (N = 117) and healthy volunteers (N = 81). Patients were observed until discharge from the intensive care unit (ICU). RESULTS: Three days after sepsis onset, the median [interquartile range] levels of AChE and BChE were reduced in both patients with viral sepsis (AChE, 5,105 [4,010-6,250] U·L-1; BChE, 1,943 [1,393-2,468] U·L-1) and nonviral sepsis (AChE, 4,424 [3,630-5,055] U·L-1; BChE, 1,095 [834-1,526] U·L-1) compared with healthy volunteers (AChE, 6,693 [5,401-8,020] U·L-1; BChE, 2,645 [2,198-3,478] U·L-1). Patients with viral sepsis with SAE during their ICU stay had lower AChE activity three days after sepsis onset than patients without SAE (4,249 [3,798-5,351] U·L-1 vs 5,544 [4,124-6,461] U·L-1). Butyrylcholinesterase activity seven days after sepsis onset was lower in patients with viral sepsis who died in the ICU than in surviving patients (1,427 [865-2,181] U·L-1 vs 2,122 [1,571-2,787] U·L-1). CONCLUSION: Cholinesterase activities may be relevant prognostic markers for the occurrence of SAE and mortality in the ICU in patients with viral sepsis. STUDY REGISTRATION: This study constitutes an analysis of data from the ongoing studies ICROS (NCT03620409, first submitted 15 May 2018) and ICROVID (DRKS00024162, first submitted 9 February 2021).


RéSUMé: OBJECTIF: Certaines données probantes soutiennent que le déséquilibre cholinergique secondaire à la neuroinflammation joue un rôle dans la physiopathologie de l'encéphalopathie associée au sepsis (EAS). Les activités de l'acétylcholinestérase (AChE) et de la butyrylcholinestérase (BChE) sanguines ont été proposées comme paramètres de substitution de la fonction cholinergique du système nerveux central. Le sepsis viral est associé à une inflammation systémique et il a été rapporté que la BChE possédait une valeur pronostique dans une petite cohorte atteinte de COVID-19. Néanmoins, la valeur pronostique de l'AChE chez les patient·es atteint·es de sepsis viral reste incertaine. MéTHODE: Nous avons étudié le rôle des activités de l'AChE et de la BChE en tant que biomarqueurs pronostiques de l'EAS et de la mortalité chez les patient·es atteint·es de sepsis viral vs non viral recruté·es dans deux études de cohorte prospectives. Nous avons quantifié les activités de l'AChE et de la BChE dans le sang total de patient·es à deux moments de la phase aiguë du sepsis viral (N = 108) et les avons comparées aux activités chez les patient·es atteint·es de sepsis non viral (N = 117) et chez des volontaires sain·es (N = 81). Les patient·es ont été observé·es jusqu'à leur sortie de l'unité de soins intensifs (USI). RéSULTATS: Trois jours après l'apparition du sepsis, les taux médians [écart interquartile] d'AChE et BChE étaient réduits tant chez la patientèle atteinte de sepsis viral (AChE, 5105 [4010­6250] U·L−1; BChE, 1943 [1393­2468] U·L−1) et de sepsis non viral (AChE, 4424 [3630­5055] U·L−1; BChE, 1095 [834­1526] U·L−1) par rapport aux volontaires sain·es (AChE, 6693 [5401­8020] U·L−1; BChE, 2645 [2198­3478] U·L−1). Les patient·es atteint·es de sepsis viral avec EAS pendant leur séjour aux soins intensifs avaient une activité AChE plus faible trois jours après l'apparition du sepsis que les personnes sans EAS (4249 [3798­5351] U·L−1 vs 5544 [4124­6461] U·L−1). L'activité de la butyrylcholinestérase sept jours après l'apparition du sepsis était plus faible chez les patient·es atteint·es de sepsis viral décédé·es à l'USI que chez les personnes ayant survécu (1427 [865­2181] U·L-1 vs 2122 [1571­2787] U·L-1). CONCLUSION: Les activités des cholinestérases pourraient constituer des marqueurs pronostiques pertinents pour la survenue d'EAS et la mortalité en soins intensifs chez la patientèle atteinte de sepsis viral. ENREGISTREMENT DE L'éTUDE: Cette étude constitue une analyse des données des études en cours ICROS (NCT03620409, première soumission le 15 mai 2018) et ICROVID (DRKS00024162, première soumission le 9 février 2021).


Asunto(s)
Encefalopatía Asociada a la Sepsis , Sepsis , Humanos , Butirilcolinesterasa , Acetilcolinesterasa , Estudios Prospectivos , Sepsis/complicaciones , Colinérgicos , Inhibidores de la Colinesterasa
7.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062926

RESUMEN

Typical hemolytic uremic syndrome (HUS) can occur as a severe systemic complication of infections with Shiga toxin (Stx)-producing Escherichia coli. Its pathology can be induced by Stx types, resulting in toxin-mediated damage to renal barriers, inflammation, and the development of acute kidney injury (AKI). Two sphingosine kinase (SphK) isozymes, SphK1 and SphK2, have been shown to be involved in barrier maintenance and renal inflammatory diseases. Therefore, we sought to determine their role in the pathogenesis of HUS. Experimental HUS was induced by the repeated administration of Stx2 in wild-type (WT) and SphK1 (SphK1-/-) or SphK2 (SphK2-/-) null mutant mice. Disease severity was evaluated by assessing clinical symptoms, renal injury and dysfunction, inflammatory status and sphingolipid levels on day 5 of HUS development. Renal inflammation and injury were found to be attenuated in the SphK2-/- mice, but exacerbated in the SphK1-/- mice compared to the WT mice. The divergent outcome appeared to be associated with oppositely altered sphingolipid levels. This study represents the first description of the distinct roles of SphK1-/- and SphK2-/- in the pathogenesis of HUS. The identification of sphingolipid metabolism as a potential target for HUS therapy represents a significant advance in the field of HUS research.


Asunto(s)
Lesión Renal Aguda , Síndrome Hemolítico-Urémico , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/genética , Ratones , Síndrome Hemolítico-Urémico/patología , Síndrome Hemolítico-Urémico/genética , Modelos Animales de Enfermedad , Esfingolípidos/metabolismo , Riñón/patología , Riñón/metabolismo , Ratones Endogámicos C57BL , Toxina Shiga II , Eliminación de Gen , Masculino
8.
Ann Surg ; 278(1): e137-e146, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35837955

RESUMEN

OBJECTIVE: The aim of this study was to investigate (a) the effects of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway inhibitor (baricitinib) on the multiple organ dysfunction syndrome (MODS) in a rat model of hemorrhagic shock (HS) and (b) whether treatment with baricitinib attenuates the activation of JAK/STAT, NF-κB, and NLRP3 caused by HS. BACKGROUND: Posttraumatic MODS, which is in part due to excessive systemic inflammation, is associated with high morbidity and mortality. The JAK/STAT pathway is a regulator of numerous growth factor and cytokine receptors and, hence, is considered a potential master regulator of many inflammatory signaling processes. However, its role in trauma-hemorrhage is unknown. METHODS: An acute HS rat model was performed to determine the effect of baricitinib on MODS. The activation of JAK/STAT, NF-κB, and NLRP3 pathways were analyzed by western blotting in the kidney and liver. RESULTS: We demonstrate here for the first time that treatment with baricitinib (during resuscitation following severe hemorrhage) attenuates the organ injury and dysfunction and the activation of JAK/STAT, NF-κB, and NLRP3 pathways caused by HS in the rat. CONCLUSIONS: Our results point to a role of the JAK/STAT pathway in the pathophysiology of the organ injury and dysfunction caused by trauma/hemorrhage and indicate that JAK inhibitors, such as baricitinib, may be repurposed for the treatment of the MODS after trauma and/or hemorrhage.


Asunto(s)
Choque Hemorrágico , Transducción de Señal , Ratas , Animales , FN-kappa B/metabolismo , FN-kappa B/farmacología , Quinasas Janus/metabolismo , Quinasas Janus/farmacología , Choque Hemorrágico/complicaciones , Choque Hemorrágico/tratamiento farmacológico , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/farmacología
9.
Ann Surg ; 277(3): e624-e633, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129479

RESUMEN

OBJECTIVE: The aim of this study was to investigate (a) the potential of the Bruton's tyrosine kinase (BTK) inhibitors acalabrutinib and fenebrutinib to reduce multiple organ dysfunction syndrome (MODS) in acute (short-term and long-term follow-up) hemorrhagic shock (HS) rat models and (b) whether treatment with either acalabrutinib or fenebrutinib attenuates BTK, NF-κB and NLRP3 activation in HS. BACKGROUND: The MODS caused by an excessive systemic inflammatory response following trauma is associated with a high morbidity and mortality. The protein BTK is known to play a role in the activation of the NLRP3 inflammasome, which is a key component of the innate inflammatory response. However, its role in trauma-hemorrhage is unknown. METHODS: Acute HS rat models were performed to determine the influence of acalabrutinib or fenebrutinib on MODS. The activation of BTK, NF-κB and NLRP3 pathways were analyzed by western blot in the kidney. RESULTS: We demonstrated that (a) HS caused organ injury and/or dysfunction and hypotension (post-resuscitation) in rats, while (b) treatment of HS-rats with either acalabrutinib or fenebrutinib attenuated the organ injury and dysfunction in acute HS models and (c) reduced the activation of BTK, NF- kB and NLRP3 pathways in the kidney. CONCLUSION: Our results point to a role of BTK in the pathophysiology of organ injury and dysfunction caused by trauma/hemorrhage and indicate that BTK inhibitors may be repurposed as a potential therapeutic approach for MODS after trauma and/or hemorrhage.


Asunto(s)
Choque Hemorrágico , Animales , Ratas , Choque Hemorrágico/complicaciones , Choque Hemorrágico/tratamiento farmacológico , Agammaglobulinemia Tirosina Quinasa , FN-kappa B , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR
10.
Brain Behav Immun ; 111: 230-246, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37100210

RESUMEN

The prefrontal cortex (PFC) provides executive top-down control of a variety of cognitive processes. A distinctive feature of the PFC is its protracted structural and functional maturation throughout adolescence to early adulthood, which is necessary for acquiring mature cognitive abilities. Using a mouse model of cell-specific, transient and local depletion of microglia, which is based on intracerebral injection of clodronate disodium salt (CDS) into the PFC of adolescent male mice, we recently demonstrated that microglia contribute to the functional and structural maturation of the PFC in males. Because microglia biology and cortical maturation are partly sexually dimorphic, the main objective of the present study was to examine whether microglia similarly regulate this maturational process in female mice as well. Here, we show that a single, bilateral intra-PFC injection of CDS in adolescent (6-week-old) female mice induces a local and transient depletion (70 to 80% decrease from controls) of prefrontal microglia during a restricted window of adolescence without affecting neuronal or astrocytic cell populations. This transient microglia deficiency was sufficient to disrupt PFC-associated cognitive functions and synaptic structures at adult age. Inducing transient prefrontal microglia depletion in adult female mice did not cause these deficits, demonstrating that the adult PFC, unlike the adolescent PFC, is resilient to transient microglia deficiency in terms of lasting cognitive and synaptic maladaptations. Together with our previous findings in males, the present findings suggest that microglia contribute to the maturation of the female PFC in a similar way as to the prefrontal maturation occurring in males.


Asunto(s)
Microglía , Neuronas , Masculino , Femenino , Animales , Estudios de Seguimiento , Neuronas/fisiología , Cognición , Corteza Prefrontal
11.
Brain ; 145(10): 3681-3697, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-35583160

RESUMEN

Severe spinal cord injuries result in permanent paraparesis in spite of the frequent sparing of small portions of white matter. Spared fibre tracts are often incapable of maintaining and modulating the activity of lower spinal motor centres. Effects of rehabilitative training thus remain limited. Here, we activated spared descending brainstem fibres by electrical deep brain stimulation of the cuneiform nucleus of the mesencephalic locomotor region, the main control centre for locomotion in the brainstem, in adult female Lewis rats. We show that deep brain stimulation of the cuneiform nucleus enhances the weak remaining motor drive in highly paraparetic rats with severe, incomplete spinal cord injuries and enables high-intensity locomotor training. Stimulation of the cuneiform nucleus during rehabilitative aquatraining after subchronic (n = 8 stimulated versus n = 7 unstimulated versus n = 7 untrained rats) and chronic (n = 14 stimulated versus n = 9 unstimulated versus n = 9 untrained rats) spinal cord injury re-established substantial locomotion and improved long-term recovery of motor function. We additionally identified a safety window of stimulation parameters ensuring context-specific locomotor control in intact rats (n = 18) and illustrate the importance of timing of treatment initiation after spinal cord injury (n = 14). This study highlights stimulation of the cuneiform nucleus as a highly promising therapeutic strategy to enhance motor recovery after subchronic and chronic incomplete spinal cord injury with direct clinical applicability.


Asunto(s)
Formación Reticular Mesencefálica , Traumatismos de la Médula Espinal , Femenino , Ratas , Animales , Ratas Endogámicas Lew , Traumatismos de la Médula Espinal/terapia , Locomoción/fisiología , Tronco Encefálico , Médula Espinal , Recuperación de la Función/fisiología
12.
BMC Med Ethics ; 24(1): 84, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848886

RESUMEN

With the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), global researchers were confronted with major challenges. The German National Pandemic Cohort Network (NAPKON) was launched in fall 2020 to effectively leverage resources and bundle research activities in the fight against the coronavirus disease 2019 (COVID-19) pandemic. We analyzed the setup phase of NAPKON as an example for multicenter studies in Germany, highlighting challenges and optimization potential in connecting 59 university and nonuniversity study sites. We examined the ethics application process of 121 ethics submissions considering durations, annotations, and outcomes. Study site activation and recruitment processes were investigated and related to the incidence of SARS-CoV-2 infections. For all initial ethics applications, the median time to a positive ethics vote was less than two weeks and 30 of these study sites (65%) joined NAPKON within less than three weeks each. Electronic instead of postal ethics submission (9.5 days (Q1: 5.75, Q3: 17) vs. 14 days (Q1: 11, Q3: 26), p value = 0.01) and adoption of the primary ethics vote significantly accelerated the ethics application process. Each study center enrolled a median of 37 patients during the 14-month observation period, with large differences depending on the health sector. We found a positive correlation between recruitment performance and COVID-19 incidence as well as hospitalization incidence. Our analysis highlighted the challenges and opportunities of the federated system in Germany. Digital ethics application tools, adoption of a primary ethics vote and standardized formal requirements lead to harmonized and thus faster study initiation processes during a pandemic.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias , Estudios de Cohortes , Alemania/epidemiología
13.
BMC Biol ; 20(1): 170, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907861

RESUMEN

BACKGROUND: Neuropsychiatric disorders, such as schizophrenia (SZ) and autism spectrum disorder (ASD), are common, multi-factorial and multi-symptomatic disorders. Ample evidence implicates oxidative stress, deficient repair of oxidative DNA lesions and DNA damage in the development of these disorders. However, it remains unclear whether insufficient DNA repair and resulting DNA damage are causally connected to their aetiopathology, or if increased levels of DNA damage observed in patient tissues merely accumulate as a consequence of cellular dysfunction. To assess a potential causal role for deficient DNA repair in the development of these disorders, we behaviourally characterized a mouse model in which CaMKIIa-Cre-driven postnatal conditional knockout (KO) of the core base-excision repair (BER) protein XRCC1 leads to accumulation of unrepaired DNA damage in the forebrain. RESULTS: CaMKIIa-Cre expression caused specific deletion of XRCC1 in the dorsal dentate gyrus (DG), CA1 and CA2 and the amygdala and led to increased DNA damage therein. While motor coordination, cognition and social behaviour remained unchanged, XRCC1 KO in the forebrain caused increased anxiety-like behaviour in males, but not females, as assessed by the light-dark box and open field tests. Conversely, in females but not males, XRCC1 KO caused an increase in learned fear-related behaviour in a cued (Pavlovian) fear conditioning test and a contextual fear extinction test. The relative density of the GABA(A) receptor alpha 5 subunit (GABRA5) was reduced in the amygdala and the dorsal CA1 in XRCC1 KO females, whereas male XRCC1 KO animals exhibited a significant reduction of GABRA5 density in the CA3. Finally, assessment of fast-spiking, parvalbumin-positive (PV) GABAergic interneurons revealed a significant increase in the density of PV+ cells in the DG of male XRCC1 KO mice, while females remained unchanged. CONCLUSIONS: Our results suggest that accumulation of unrepaired DNA damage in the forebrain alters the GABAergic neurotransmitter system and causes behavioural deficits in relation to innate and learned anxiety in a sex-dependent manner. Moreover, the data uncover a previously unappreciated connection between BER deficiency, unrepaired DNA damage in the hippocampus and a sex-specific anxiety-like phenotype with implications for the aetiology and therapy of neuropsychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Extinción Psicológica , Animales , Ansiedad/genética , ADN , Daño del ADN , Reparación del ADN , Miedo/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Fenotipo , Prosencéfalo
14.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298718

RESUMEN

Osteomyelitis is an infection of the bone that is often difficult to treat and causes a significant healthcare burden. Staphylococcus aureus is the most common pathogen causing osteomyelitis. Osteomyelitis mouse models have been established to gain further insights into the pathogenesis and host response. Here, we use an established S. aureus hematogenous osteomyelitis mouse model to investigate morphological tissue changes and bacterial localization in chronic osteomyelitis with a focus on the pelvis. X-ray imaging was performed to follow the disease progression. Six weeks post infection, when osteomyelitis had manifested itself with a macroscopically visible bone deformation in the pelvis, we used two orthogonal methods, namely fluorescence imaging and label-free Raman spectroscopy, to characterise tissue changes on a microscopic scale and to localise bacteria in different tissue regions. Hematoxylin and eosin as well as Gram staining were performed as a reference method. We could detect all signs of a chronically florid tissue infection with osseous and soft tissue changes as well as with different inflammatory infiltrate patterns. Large lesions dominated in the investigated tissue samples. Bacteria were found to form abscesses and were distributed in high numbers in the lesion, where they could occasionally also be detected intracellularly. In addition, bacteria were found in lower numbers in surrounding muscle tissue and even in lower numbers in trabecular bone tissue. The Raman spectroscopic imaging revealed a metabolic state of the bacteria with reduced activity in agreement with small cell variants found in other studies. In conclusion, we present novel optical methods to characterise bone infections, including inflammatory host tissue reactions and bacterial adaptation.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Osteomielitis , Infecciones Estafilocócicas , Ratones , Animales , Staphylococcus aureus/fisiología , Osteomielitis/patología , Modelos Animales de Enfermedad , Inflamación , Infecciones Estafilocócicas/microbiología , Infección Persistente
15.
Kidney Int ; 101(6): 1171-1185, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35031328

RESUMEN

Thrombotic microangiopathy, hemolysis and acute kidney injury are typical clinical characteristics of hemolytic-uremic syndrome (HUS), which is predominantly caused by Shiga-toxin-producing Escherichia coli. Free heme aggravates organ damage in life-threatening infections, even with a low degree of systemic hemolysis. Therefore, we hypothesized that the presence of the hemoglobin- and the heme-scavenging proteins, haptoglobin and hemopexin, respectively impacts outcome and kidney pathology in HUS. Here, we investigated the effect of haptoglobin and hemopexin deficiency (haptoglobin-/-, hemopexin-/-) and haptoglobin treatment in a murine model of HUS-like disease. Seven-day survival was decreased in haptoglobin-/- (25%) compared to wild type mice (71.4%), whereas all hemopexin-/- mice survived. Shiga-toxin-challenged hemopexin-/- mice showed decreased kidney inflammation and attenuated thrombotic microangiopathy, indicated by reduced neutrophil recruitment and platelet deposition. These observations were associated with supranormal haptoglobin plasma levels in hemopexin-/- mice. Low dose haptoglobin administration to Shiga-toxin-challenged wild type mice attenuated kidney platelet deposition and neutrophil recruitment, suggesting that haptoglobin at least partially contributes to the beneficial effects. Surrogate parameters of hemolysis were elevated in Shiga-toxin-challenged wild type and haptoglobin-/- mice, while signs for hepatic hemoglobin degradation like heme oxygenase-1, ferritin and CD163 expression were only increased in Shiga-toxin-challenged wild type mice. In line with this observation, haptoglobin-/- mice displayed tubular iron deposition as an indicator for kidney hemoglobin degradation. Thus, haptoglobin and hemopexin deficiency plays divergent roles in Shiga-toxin-mediated HUS, suggesting haptoglobin is involved and hemopexin is redundant for the resolution of HUS pathology.


Asunto(s)
Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Escherichia coli Shiga-Toxigénica , Microangiopatías Trombóticas , Animales , Progresión de la Enfermedad , Infecciones por Escherichia coli/complicaciones , Haptoglobinas/genética , Hemo , Hemoglobinas , Hemólisis , Síndrome Hemolítico-Urémico/complicaciones , Hemopexina , Ratones , Toxina Shiga , Microangiopatías Trombóticas/etiología
16.
Mol Psychiatry ; 26(6): 2025-2037, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32398717

RESUMEN

The mitochondrial protein, translocator protein (TSPO), is a widely used biomarker of neuroinflammation, but its non-selective cellular expression pattern implies roles beyond inflammatory processes. In the present study, we investigated whether neuronal activity modifies TSPO levels in the adult central nervous system. First, we used single-cell RNA sequencing to generate a cellular landscape of basal TSPO gene expression in the hippocampus of adult (12 weeks old) C57BL6/N mice, followed by confocal laser scanning microscopy to verify TSPO protein in neuronal and non-neuronal cell populations. We then quantified TSPO mRNA and protein levels after stimulating neuronal activity with distinct stimuli, including designer receptors exclusively activated by designer drugs (DREADDs), exposure to a novel environment and acute treatment with the psychostimulant drug, amphetamine. Single-cell RNA sequencing demonstrated a non-selective and multi-cellular gene expression pattern of TSPO at basal conditions in the adult mouse hippocampus. Confocal laser scanning microscopy confirmed that TSPO protein is present in neuronal and non-neuronal (astrocytes, microglia, vascular endothelial cells) cells of cortical (medial prefrontal cortex) and subcortical (hippocampus) brain regions. Stimulating neuronal activity through chemogenetic (DREADDs), physiological (novel environment exposure) or psychopharmacological (amphetamine treatment) approaches led to consistent increases in TSPO gene and protein levels in neurons, but not in microglia or astrocytes. Taken together, our findings show that neuronal activity has the potential to modify TSPO levels in the adult central nervous system. These findings challenge the general assumption that altered TSPO expression or binding unequivocally mirrors ongoing neuroinflammation and emphasize the need to consider non-inflammatory interpretations in some physiological or pathological contexts.


Asunto(s)
Células Endoteliales , Receptores de GABA , Animales , Ratones , Microglía , Neuronas , Tomografía de Emisión de Positrones , Receptores de GABA/genética
17.
Mol Psychiatry ; 26(2): 396-410, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33230204

RESUMEN

Infectious or noninfectious maternal immune activation (MIA) is an environmental risk factor for psychiatric and neurological disorders with neurodevelopmental etiologies. Whilst there is increasing evidence for significant health consequences, the effects of MIA on the offspring appear to be variable. Here, we aimed to identify and characterize subgroups of isogenic mouse offspring exposed to identical MIA, which was induced in C57BL6/N mice by administration of the viral mimetic, poly(I:C), on gestation day 12. Cluster analysis of behavioral data obtained from a first cohort containing >150 MIA and control offspring revealed that MIA offspring could be stratified into distinct subgroups that were characterized by the presence or absence of multiple behavioral dysfunctions. The two subgroups also differed in terms of their transcriptional profiles in cortical and subcortical brain regions and brain networks of structural covariance, as measured by ex vivo structural magnetic resonance imaging (MRI). In a second, independent cohort containing 50 MIA and control offspring, we identified a subgroup of MIA offspring that displayed elevated peripheral production of innate inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, in adulthood. This subgroup also showed significant impairments in social approach behavior and sensorimotor gating, whereas MIA offspring with a low inflammatory cytokine status did not. Taken together, our results highlight the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network, and immunological profiles even under conditions of genetic homogeneity. These data have relevance for advancing our understanding of the variable neurodevelopmental effects induced by MIA and for biomarker-guided approaches in preclinical psychiatric research.


Asunto(s)
Conducta Animal , Efectos Tardíos de la Exposición Prenatal , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Embarazo , Conducta Social
18.
HNO ; 70(2): 133-139, 2022 Feb.
Artículo en Alemán | MEDLINE | ID: mdl-34791514

RESUMEN

BACKGROUND: This retrospective observational study was undertaken to assess the ENT emergency workload during the COVID-19 pandemic caused by the severe acute respiratory coronavirus­2 (SARS-CoV-2). MATERIALS AND METHODS: All 3230 patients who were treated as an emergency from 23.01.2020 to 06.08.2020 in the Department of Otolaryngology at the SLK-Kliniken Heilbronn were included in this study. Demographic data, diagnostics, diagnosis, and treatment (in-/outpatient) were retrospectively retrieved. Not only did the physicians on call triage the emergency department (ED) ENT patients, but the patients also self-assessed their urgency of treatment. RESULTS: The number of patients consulting our ED decreased significantly during the pandemic, by 42.2%. However, the top diagnoses remained almost constant, with epistaxis being the most frequent diagnosis before, during, and after COVID-19. Facial trauma remained the second most frequent consultation reason. The hospitalization rate decreased from 21.9% before COVID-19 to 16.2% during the pandemic. Surgical therapy was necessary in 17.6% of patients before COVID-19 and this increased to 23.5% during COVID-19. The self-referral rate increased from 61 to 66% during the pandemic. More men than women consulted the ED during COVID-19. Regarding the triage assessment by the physician on call and the patient's self-assessment, a significant discrepancy was noted before, during, and after COVID-19. CONCLUSION: The reasons for reduction in ENT ED visits are multifactorial. The clinical consequences of decreased hospitalizations remain uncertain. However, health authorities need to advocate the safety of the hospital environment to limit potential damage.


Asunto(s)
COVID-19 , Pandemias , Servicio de Urgencia en Hospital , Femenino , Humanos , Masculino , Estudios Retrospectivos , SARS-CoV-2
19.
Clin Sci (Lond) ; 135(24): 2781-2791, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34878105

RESUMEN

Low plasma levels of the signaling lipid metabolite sphingosine 1-phosphate (S1P) are associated with disrupted endothelial cell (EC) barriers, lymphopenia and reduced responsivity to hypoxia. Total S1P levels were also reduced in 23 critically ill patients with coronavirus disease 2019 (COVID-19), and the two main S1P carriers, serum albumin (SA) and high-density lipoprotein (HDL) were dramatically low. Surprisingly, we observed a carrier-changing shift from SA to HDL, which probably prevented an even further drop in S1P levels. Furthermore, intracellular S1P levels in red blood cells (RBCs) were significantly increased in COVID-19 patients compared with healthy controls due to up-regulation of S1P producing sphingosine kinase 1 and down-regulation of S1P degrading lyase expression. Cell culture experiments supported increased sphingosine kinase activity and unchanged S1P release from RBC stores of COVID-19 patients. These observations suggest adaptive mechanisms for maintenance of the vasculature and immunity as well as prevention of tissue hypoxia in COVID-19 patients.


Asunto(s)
COVID-19/sangre , COVID-19/fisiopatología , Eritrocitos/metabolismo , Lisofosfolípidos/sangre , Esfingosina/análogos & derivados , Anciano , Células Cultivadas , Humanos , Lipoproteínas HDL/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , SARS-CoV-2 , Albúmina Sérica/metabolismo , Esfingosina/sangre
20.
Biometals ; 34(2): 211-220, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33560473

RESUMEN

We investigated the aluminium-salen complex MBR-8 as a potential anti-cancer agent. To see apoptotic effects induced by MBR-8, alone and in combination with common cytostatic drugs, DNA-fragmentations were studied using the flow cytometric analysis. Western blot analysis and measurement of the mitochondrial membrane potential with a JC-1 dye were employed to identify the pathway of apoptosis. An impressive overcoming of multidrug-resistance in leukemia (Nalm6) cells was observed. Additionally, solid tumor cells including Burkitt-like lymphoma (BJAB) and mamma carcinoma cells (MCF-7) are affected by MBR-8 in the same way. Western blot analysis revealed activation of caspase-3. MBR-8 showed very pronounced selectivity with regard to tumor cells and high synergistic effects in Nalm6 and daunorubicin-resistant Nalm6 cells when administered in combination with vincristine, daunorubicin and doxorubicin. The aluminium-salen complex MBR-8 showed very promising anti-cancer properties which warrant further development towards a cytostatic agent for future chemotherapy. Studies on aluminium compounds for cancer therapy are rare, and our report adds to this important body of knowledge.


Asunto(s)
Aluminio/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Complejos de Coordinación/farmacología , Citostáticos/farmacología , Etilenodiaminas/farmacología , Aluminio/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Citostáticos/síntesis química , Citostáticos/química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Etilenodiaminas/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA