Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38323424

RESUMEN

AIMS: To determine the effect of a two-week reduced fat and sugar and increased fibre maternal dietary intervention on the maternal faecal and human milk (HM) microbiomes. METHODS AND RESULTS: Faecal swabs and HM samples were collected from mothers (n = 11) immediately pre-intervention, immediately post-intervention, and 4 and 8 weeks post-intervention, and were analysed using full-length 16S rRNA gene sequencing. Maternal macronutrient intake was assessed at baseline and during the intervention. Maternal fat and sugar intake during the intervention were significantly lower than pre-intervention (P = <0.001, 0.005, respectively). Significant changes in the bacterial composition of maternal faeces were detected after the dietary intervention, with decreases in the relative abundance of Bacteroides caccae (P = <0.001) and increases in the relative abundance of Faecalibacillus intestinalis (P = 0.006). In HM, the diet resulted in a significant increase in Cutibacterium acnes (P = 0.001) and a decrease in Haemophilus parainfluenzae (P = <0.001). The effect of the diet continued after the intervention, with faecal swabs and HM samples taken 4 and 8 weeks after the diet showing significant differences compared to baseline. CONCLUSION: This pilot study demonstrates that short-term changes in maternal diet during lactation can alter the bacterial composition of the maternal faeces and HM.


Asunto(s)
Heces , Lactancia , Leche Humana , Humanos , Heces/microbiología , Leche Humana/microbiología , Femenino , Adulto , Dieta , ARN Ribosómico 16S/genética , Proyectos Piloto , Microbiota , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Fibras de la Dieta
2.
Acta Paediatr ; 111(6): 1121-1126, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35067980

RESUMEN

Humans are exposed to environmental factors at every stage of life including infancy. The aim of this mini-review was to present a narrative of environmental factors influencing human milk composition. Current literature shows lactation is a dynamic process and is responsive to multiple environmental challenges including geographical location, lifestyle, persistent pollutants and maternal factors (ethnicity, diet, stress, allergy and adiposity) that may influence human milk composition in a synergistic manner and should be considered in order to improve infant and maternal outcomes on a populations scale. Further interventional studies on larger international cohorts are needed to elucidate these complex relationships. Lactating women should aim for a healthy lifestyle and maintain a healthy body composition prior to and throughout the reproductive period, including during lactation.


Asunto(s)
Lactancia , Leche Humana , Composición Corporal , Lactancia Materna , Femenino , Humanos , Lactante , Evaluación de Resultado en la Atención de Salud
3.
Nutr Rev ; 81(6): 705-715, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36130405

RESUMEN

Human milk contains a low-biomass, low-diversity microbiome, consisting largely of bacteria. This community is of great research interest in the context of infant health and maternal and mammary health. However, this sample type presents many unique methodological challenges. In particular, there are numerous technical considerations relating to sample collection and storage, DNA extraction and sequencing, viability, and contamination. Failure to properly address these challenges may lead to distortion of bacterial DNA profiles generated from human milk samples, ultimately leading to spurious conclusions. Here, these technical challenges are discussed, and various methodological approaches used to address them are analyzed. Data were collected from studies in which a breadth of methodological approaches were used, and recommendations for robust and reproducible analysis of the human milk microbiome are proposed. Such methods will ensure high-quality data are produced in this field, ultimately supporting better research outcomes for mothers and infants.


Asunto(s)
Microbiota , Leche Humana , Lactante , Humanos , Leche Humana/microbiología , Microbiota/genética , Bacterias , ADN Bacteriano/genética , Heces/microbiología
4.
PLoS One ; 18(1): e0280960, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36696407

RESUMEN

Human milk is composed of complex microbial and non-microbial components that shape the infant gut microbiome. Although several maternal and infant factors have been associated with human milk microbiota, no study has investigated this in an Australian population. Therefore, we aimed to investigate associations between human milk bacterial composition of Australian women and maternal factors (body mass index (BMI), mode of delivery, breast pump use, allergy, parity) and infant factors (sex, mode of feeding, pacifier use, and introduction of solids). Full-length 16S rRNA gene sequencing was used to characterise milk bacterial DNA profiles. Milk from mothers with a normal BMI had a higher relative abundance of Streptococcus australis than that of underweight mothers, while milk from overweight mothers had a higher relative abundance of Streptococcus salivarius compared with underweight and obese mothers. Mothers who delivered vaginally had a higher relative abundance of Streptococcus mitis in their milk compared to those who delivered via emergency caesarean section. Milk of mothers who used a breast pump had a higher relative abundance of Staphylococcus epidermidis and Streptococcus parasanguinis. Milk of mothers whose infants used a pacifier had a higher relative abundance of S. australis and Streptococcus gwangjuense. Maternal BMI, mode of delivery, breast pump use, and infant pacifier use are associated with the bacterial composition of human milk in an Australian cohort. The data from this pilot study suggests that both mother and infant can contribute to the human milk microbiome.


Asunto(s)
Cesárea , Leche Humana , Humanos , Lactante , Femenino , Embarazo , Leche Humana/microbiología , ADN Bacteriano/genética , Delgadez , ARN Ribosómico 16S/genética , Proyectos Piloto , Australia , Bacterias/genética , Lactancia Materna
5.
Front Microbiol ; 13: 900702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060782

RESUMEN

Objective: A growing body of literature has shown that maternal diet during pregnancy is associated with infant gut bacterial composition. However, whether maternal diet during lactation affects the exclusively breastfed infant gut microbiome remains understudied. This study sets out to determine whether a two-week of a reduced fat and sugar maternal dietary intervention during lactation is associated with changes in the infant gut microbiome composition and function. Design: Stool samples were collected from four female and six male (n = 10) infants immediately before and after the intervention. Maternal baseline diet from healthy mothers aged 22-37 was assessed using 24-h dietary recall. During the 2-week dietary intervention, mothers were provided with meals and their dietary intake was calculated using FoodWorks 10 Software. Shotgun metagenomic sequencing was used to characterize the infant gut microbiome composition and function. Results: In all but one participant, maternal fat and sugar intake during the intervention were significantly lower than at baseline. The functional capacity of the infant gut microbiome was significantly altered by the intervention, with increased levels of genes associated with 28 bacterial metabolic pathways involved in biosynthesis of vitamins (p = 0.003), amino acids (p = 0.005), carbohydrates (p = 0.01), and fatty acids and lipids (p = 0.01). Although the dietary intervention did not affect the bacterial composition of the infant gut microbiome, relative difference in maternal fiber intake was positively associated with increased abundance of genes involved in biosynthesis of storage compounds (p = 0.016), such as cyanophycin. Relative difference in maternal protein intake was negatively associated with Veillonella parvula (p = 0.006), while positively associated with Klebsiella michiganensis (p = 0.047). Relative difference in maternal sugar intake was positively associated with Lactobacillus paracasei (p = 0.022). Relative difference in maternal fat intake was positively associated with genes involved in the biosynthesis of storage compounds (p = 0.015), fatty acid and lipid (p = 0.039), and metabolic regulator (p = 0.038) metabolic pathways. Conclusion: This pilot study demonstrates that a short-term maternal dietary intervention during lactation can significantly alter the functional potential, but not bacterial taxonomy, of the breastfed infant gut microbiome. While the overall diet itself was not able to change the composition of the infant gut microbiome, changes in intakes of maternal protein and sugar during lactation were correlated with changes in the relative abundances of certain bacterial species.Clinical trial registration: Australian New Zealand Clinical Trials Registry (ACTRN12619000606189).

6.
FEMS Microbiol Rev ; 45(5)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-33571360

RESUMEN

Initial colonisation of the infant gut is robustly influenced by regular ingestion of human milk, a substance that contains microbes, microbial metabolites, immune proteins and oligosaccharides. Numerous factors have been identified as potential determinants of the human milk and infant gut microbiota, including maternal diet; however, there is limited data on the influence of maternal diet during lactation on either of these. Here, we review the processes thought to contribute to human milk and infant gut bacterial colonisation and provide a basis for considering the role of maternal dietary patterns during lactation in shaping infant gut microbial composition and function. Although only one observational study has directly investigated the influence of maternal diet during lactation on the infant gut microbiome, data from animal studies suggests that modulation of the maternal gut microbiota, via diet or probiotics, may influence the mammary or milk microbiota. Additionally, evidence from human studies suggests that the maternal diet during pregnancy may affect the gut microbiota of the breastfed infant. Together, there is a plausible hypothesis that maternal diet during lactation may influence the infant gut microbiota. If substantiated in further studies, this may present a potential window of opportunity for modulating the infant gut microbiome in early life.


Asunto(s)
Microbioma Gastrointestinal , Animales , Lactancia Materna , Dieta , Femenino , Humanos , Lactancia , Leche Humana , Estudios Observacionales como Asunto , Embarazo
7.
Nutr Rev ; 79(5): 529-543, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32443154

RESUMEN

Human milk (HM) contains an incredible array of microorganisms. These likely contribute to the seeding of the infant gastrointestinal microbiome, thereby influencing infant immune and metabolic development and later-life health. Given the importance of the HM microbiota in this context, there has been an increase in research efforts to characterize this in different populations and in relation to different maternal and infant characteristics. However, despite a decade of intensive research, there remain several unanswered questions in this field. In this review, the "5 W+H" approach (who, what, when, where, why, and how) is used to comprehensively describe the composition, function, and origin of the HM microbiome. Here, existing evidence will be drawn together and critically appraised to highlight avenues for further research, both basic and applied. Perhaps the most interesting of these is the potential to modulate the HM microbiome using pre/probiotics or dietary interventions. Another exciting possibility is the personalization of donor milk for women with insufficient supply. By gaining a deeper understanding of the HM microbiome, opportunities to intervene to optimize infant and lifelong health may be identified.


Asunto(s)
Microbiota , Leche Humana/microbiología , Lactancia Materna , Femenino , Microbioma Gastrointestinal , Humanos , Lactante , Recién Nacido , Prebióticos , Probióticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA