RESUMEN
BACKGROUND: Chickpea is the fourth most important legume crop contributing 15.42% to the total legume production and a rich source of proteins, minerals, and vitamins. Determination of genetic diversity of wild and elite cultivars coupled with early flowering and higher seed germination lines are quintessential for variety improvement. METHODS AND RESULTS: In the present study, we have analyzed the genetic diversity, population structure, cross-species transferability, and allelic richness in 50 chickpea collections using 23 Inter simple sequence repeats (ISSR) markers. The observed parameters such as allele number varied from 3 to 16, range of allele size varied from 150 to 1600 bp and polymorphic information content (PIC) range lies in between 0.15 and 0.49. Dendrogram was constructed with ISSR marker genotypic data and classified 50 chickpea germplasms into groups I and II, where the accession P 74 - 1 is in group I and the rest are in group II. Dendrogram, Principal component analysis (PCA), dissimilarity matrix, and Bayesian model-based genetic clustering of 50 chickpea germplasms revealed that P 74 - 1 and P 1883 are very diverse chickpea accessions. CONCLUSION: Based on genetic diversity analysis, 15 chickpea germplasm having been screened for early flowering and higher seed germination and found that the P 1857-1 and P 3971 have early flowering and higher seed germination percentage in comparison to P 1883 and other germplasm. These agronomic traits are essential for crop improvement and imply the potential of ISSR markers in crop improvement.