Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Carcinog ; 60(1): 3-14, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33150660

RESUMEN

Withaferin A (WA) exhibits cancer chemopreventive efficacy in preclinical models representative of two different subtypes of breast cancer. However, the mechanism(s) underlying breast cancer chemoprevention by WA is not fully elucidated. We performed RNA-seq analyses using a non-tumorigenic mammary epithelial cell line (MCF-10A) and human breast cancer cells (BCC) belonging to the luminal-type (MCF-7), HER2-enriched (SK-BR-3), and basal-like subtype (MDA-MB-231) to identify novel cancer-selective mechanistic targets of WA. The WA-regulated transcriptome was strikingly different between MCF-10A versus BCC. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed downregulation of genes associated with cellular senescence in WA-treated BCC. Consequently, the number of senescence-associated ß-galactosidase positive cells was decreased significantly in WA-treated BCC but not in the MCF-10A cells. WA treatment caused upregulation of senescence marker p21 more robustly in BCC than in MCF-10A. Breast cancer prevention by WA in rats was also associated with upregulation of p21 protein expression. The Reactome pathway analyses indicated upregulation of genes associated with cellular response to stress/external stimuli in WA-treated BCC but not in MCF-10A. Two proteins represented in these pathways (HSPA6 and NRF2) were further investigated. While HSPA6 was dispensable for WA-mediated apoptosis and autophagy or inhibition of cell migration, the NRF2 knockout cells were more resistant to apoptosis resulting from WA treatment than control cells. Finally, expression of some glycolysis-related proteins was decreased by WA treatment both in vitro and in vivo. In summary, this study provides novel insights into cancer-selective pathways affected by WA that may contribute to its chemopreventive efficacy in breast cancer.


Asunto(s)
Anticarcinógenos/farmacología , Neoplasias de la Mama/prevención & control , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Witanólidos/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Células MCF-7 , RNA-Seq , Ratas , Transcriptoma/efectos de los fármacos
2.
Carcinogenesis ; 41(6): 778-789, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32002539

RESUMEN

Withaferin A (WA) is a promising phytochemical exhibiting in vitro and in vivo anticancer activities against prostate and other cancers, but the mechanism of its action is not fully understood. In this study, we performed RNA-seq analysis using 22Rv1 human prostate cancer cell line to identify mechanistic targets of WA. Kyoto Encyclopedia of Genes and Genomes pathway analysis of the differentially expressed genes showed most significant enrichment of genes associated with metabolism. These results were validated using LNCaP and 22Rv1 human prostate cancer cells and Hi-Myc transgenic mice as models. The intracellular levels of acetyl-CoA, total free fatty acids and neutral lipids were decreased significantly following WA treatment in both cells, which was accompanied by downregulation of mRNA (confirmed by quantitative reverse transcription-polymerase chain reaction) and protein levels of key fatty acid synthesis enzymes, including ATP citrate lyase, acetyl-CoA carboxylase 1, fatty acid synthase and carnitine palmitoyltransferase 1A. Ectopic expression of c-Myc, but not constitutively active Akt, conferred a marked protection against WA-mediated suppression of acetyl-CoA carboxylase 1 and fatty acid synthase protein expression, and clonogenic cell survival. WA was a superior inhibitor of cell proliferation and fatty acid synthesis in comparison with known modulators of fatty acid metabolism including cerulenin and etomoxir. Intraperitoneal WA administration to Hi-Myc transgenic mice (0.1 mg/mouse, three times/week for 5 weeks) also resulted in a significant decrease in circulating levels of total free fatty acids and phospholipids, and expression of ATP citrate lyase, acetyl-CoA carboxylase 1, fatty acid synthase and carnitine palmitoyltransferase 1A proteins in the prostate in vivo.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Metaboloma , Neoplasias de la Próstata/patología , RNA-Seq/métodos , Witanólidos/farmacología , Animales , Apoptosis , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Transgénicos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Células Tumorales Cultivadas
3.
Mol Carcinog ; 59(10): 1116-1128, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32754922

RESUMEN

The transcription factor forkhead box Q1 (FoxQ1) is overexpressed in different solid tumors including breast cancer, but the mechanism underlying its oncogenic function is still not fully understood. In this study, we compared RNA-seq data from FoxQ1 overexpressing SUM159 cells with that of empty vector-transfected control cells to identify novel mechanistic targets of this transcription factor. Analysis of The Cancer Genome Atlas (TCGA) data set revealed significantly higher expression of FoxQ1 in black breast cancer patients compared with white women with this disease. In contrast, expression of FoxQ1 was comparable in ductal and lobular carcinomas in the breast cancer TCGA data set. Complementing our published findings in basal-like subtype, immunohistochemistry revealed upregulation of FoxQ1 protein in luminal-type human breast cancer tissue microarrays when compared with normal mammary tissues. Many previously reported transcriptional targets of FoxQ1 (eg, E-cadherin, N-cadherin, fibronectin 1, etc) were verified from the RNA-seq analysis. FoxQ1 overexpression resulted in the downregulation of genes associated with cell cycle checkpoints, M phase, and cellular response to stress/external stimuli as evidenced from the Reactome pathway analysis. Consequently, FoxQ1 overexpression resulted in mitotic arrest in basal-like SUM159 and human mammary epithelial cell line, but not in luminal-type MCF-7 cells. Finally, we show for the first time that FoxQ1 is a direct transcriptional regulator of interleukin (IL)-1α, IL-8, and vascular endothelial growth factor in breast cancer cells as evidenced by chromatin immunoprecipitation assay. In conclusion, the present study reports novel mechanistic targets of FoxQ1 in human breast cancer cells.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular , Movimiento Celular , Proliferación Celular , Femenino , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Pronóstico , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Carcinogenesis ; 40(12): 1545-1556, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31555797

RESUMEN

Inhibition of metabolic re-programming represents an attractive approach for prevention of prostate cancer. Studies have implicated increased synthesis of fatty acids or glycolysis in pathogenesis of human prostate cancers. We have shown previously that prostate cancer prevention by sulforaphane (SFN) in Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model is associated with inhibition of fatty acid metabolism. This study utilized human prostate cancer cell lines (LNCaP, 22Rv1 and PC-3), two different transgenic mouse models (TRAMP and Hi-Myc) and plasma specimens from a clinical study to explore the glycolysis inhibition potential of SFN. We found that SFN treatment: (i) decreased real-time extracellular acidification rate in LNCaP, but not in PC-3 cell line; (ii) significantly downregulated expression of hexokinase II (HKII), pyruvate kinase M2 and/or lactate dehydrogenase A (LDHA) in vitro in cells and in vivo in neoplastic lesions in the prostate of TRAMP and Hi-Myc mice; and (iii) significantly suppressed glycolysis in prostate of Hi-Myc mice as measured by ex vivo1H magnetic resonance spectroscopy. SFN treatment did not decrease glucose uptake or expression of glucose transporters in cells. Overexpression of c-Myc, but not constitutively active Akt, conferred protection against SFN-mediated downregulation of HKII and LDHA protein expression and suppression of lactate levels. Examination of plasma lactate levels in prostate cancer patients following administration of an SFN-rich broccoli sprout extract failed to show declines in its levels. Additional clinical trials are needed to determine whether SFN treatment can decrease lactate production in human prostate tumors.


Asunto(s)
Adenocarcinoma/metabolismo , Anticarcinógenos/farmacología , Glucólisis/efectos de los fármacos , Isotiocianatos/farmacología , Neoplasias de la Próstata/metabolismo , Adenocarcinoma/patología , Animales , Quimioprevención/métodos , Humanos , Masculino , Ratones , Ratones Transgénicos , Neoplasias de la Próstata/patología , Sulfóxidos
5.
Semin Cancer Biol ; 47: 147-153, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-27867044

RESUMEN

Cancer chemoprevention, a scientific term coined by Dr. Sporn in the late seventies, implies use of natural or synthetic chemicals to block, delay or reverse carcinogenesis. Phytochemicals derived from edible and medicinal plants have been studied rather extensively for cancer chemoprevention using preclinical models in the past few decades. Nevertheless, some of these agents (e.g., isothiocyanates from cruciferous vegetables like broccoli and watercress) have already entered into clinical investigations. Examples of widely studied and highly promising phytochemicals from edible and medicinal plants include cruciferous vegetable constituents (phenethyl isothiocyanate, benzyl isothiocyanate, and sulforaphane), withaferin A (WA) derived from a medicinal plant (Withania somnifera) used heavily in Asia, and an oriental medicine plant component honokiol (HNK). An interesting feature of these structurally-diverse phytochemicals is that they target mitochondria to provoke cancer cell-selective death program. Mechanisms underlying cell death induction by commonly studied phytochemicals have been discussed rather extensively and thus are not covered in this review article. Instead, the primary focus of this perspective is to discuss experimental evidence pointing to mitochondrial dysfunction in cancer chemoprevention by promising phytochemicals.


Asunto(s)
Quimioprevención , Suplementos Dietéticos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/prevención & control , Fitoquímicos/administración & dosificación , Plantas Medicinales/química , Animales , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Humanos , Mitocondrias/genética , Dinámicas Mitocondriales/efectos de los fármacos
6.
Carcinogenesis ; 39(6): 826-837, 2018 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-29668854

RESUMEN

Increased de novo synthesis of fatty acids is a rather unique and targetable mechanism of human prostate cancer. We have shown previously that oral administration of sulforaphane (SFN) significantly inhibits the incidence and/or burden of prostatic intraepithelial neoplasia and well-differentiated adenocarcinoma in TRansgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice. The present study used cellular models of prostate cancer and archived plasma/adenocarcinoma tissues and sections from the TRAMP study to demonstrate inhibition of fatty acid synthesis by SFN treatment in vitro and in vivo. Treatment of androgen-responsive (LNCaP) and castration-resistant (22Rv1) human prostate cancer cells with SFN (5 and 10 µM) resulted in downregulation of protein and mRNA levels of acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FASN), but not ATP citrate lyase. Protein and mRNA levels of carnitine palmitoyltransferase 1A (CPT1A), which facilitates fatty acid uptake by mitochondria for ß-oxidation, were also decreased following SFN treatment in both cell lines. Immunohistochemistry revealed a significant decrease in expression of FASN and ACC1 proteins in prostate adenocarcinoma sections of SFN-treated TRAMP mice when compared with controls. SFN administration to TRAMP mice resulted in a significant decrease in plasma and/or prostate adenocarcinoma levels of total free fatty acids, total phospholipids, acetyl-CoA and ATP. Consistent with these results, number of neutral lipid droplets was lower in the prostate adenocarcinoma sections of SFN-treated TRAMP mice than in control tumors. Collectively, these observations indicate that prostate cancer chemoprevention by SFN in TRAMP mice is associated with inhibition of fatty acid metabolism.


Asunto(s)
Anticarcinógenos/farmacología , Ácidos Grasos/metabolismo , Isotiocianatos/farmacología , Neoplasias de la Próstata/prevención & control , Adenocarcinoma/metabolismo , Adenocarcinoma/prevención & control , Animales , Quimioprevención/métodos , Ácido Graso Sintasas/efectos de los fármacos , Ácido Graso Sintasas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Próstata/efectos de los fármacos , Próstata/metabolismo , Neoplasia Intraepitelial Prostática/metabolismo , Neoplasia Intraepitelial Prostática/prevención & control , Neoplasias de la Próstata/metabolismo , Sulfóxidos
7.
Cancer Prev Res (Phila) ; 16(1): 5-16, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36251722

RESUMEN

Withaferin A (WA), which is a small molecule derived from a medicinal plant (Withania somnifera), inhibits growth of human breast cancer xenografts and mammary tumor development in rodent models without any toxicity. However, the mechanism underlying inhibition of mammary cancer development by WA administration is not fully understood. Herein, we demonstrate that the fatty acid synthesis pathway is a novel target of WA in mammary tumors. Treatment of MCF-7 and MDA-MB-231 cells with WA resulted in suppression of fatty acid metabolizing enzymes, including ATP-citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A). Expression of FASN and CPT1A was significantly higher in N-methyl-N-nitrosourea-induced mammary tumors in rats when compared with normal mammary tissues. WA-mediated inhibition of mammary tumor development in rats was associated with a statistically significant decrease in expression of ACC1 and FASN and suppression of plasma and/or mammary tumor levels of total free fatty acids and phospholipids. WA administration also resulted in a significant increase in percentage of natural killer cells in the spleen. The protein level of sterol regulatory element binding protein 1 (SREBP1) was decreased in MDA-MB-231 cells after WA treatment. Overexpression of SREBP1 in MDA-MB-231 cells conferred partial but significant protection against WA-mediated downregulation of ACLY and ACC1. In conclusion, circulating and/or mammary tumor levels of fatty acid synthesis enzymes and total free fatty acids may serve as biomarkers of WA efficacy in future clinical trials. PREVENTION RELEVANCE: The present study shows that breast cancer prevention by WA in rats is associated with suppression of fatty acid synthesis.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Witanólidos , Ratas , Humanos , Animales , Femenino , Ácidos Grasos no Esterificados/uso terapéutico , Apoptosis , Witanólidos/farmacología , Witanólidos/uso terapéutico , Neoplasias de la Mama/patología , Neoplasias Mamarias Animales/tratamiento farmacológico , Ácidos Grasos
8.
Res Sq ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37645831

RESUMEN

Patients with tumors that do not respond to immune-checkpoint inhibition often harbor a non-T cell-inflamed tumor microenvironment, characterized by the absence of IFN-γ-associated CD8+ T cell and dendritic cell activation. Understanding the molecular mechanisms underlying immune exclusion in non-responding patients may enable the development of novel combination therapies. p38 MAPK is a known regulator of dendritic and myeloid cells however a tumor-intrinsic immunomodulatory role has not been previously described. Here we identify tumor cell p38 signaling as a therapeutic target to potentiate anti-tumor immunity and overcome resistance to immune-checkpoint inhibitors (ICI). Molecular analysis of tumor tissues from patients with human papillomavirus-negative head and neck squamous carcinoma reveals a p38-centered network enriched in non-T cell-inflamed tumors. Pan-cancer single-cell RNA analysis suggests that p38 activation may be an immune-exclusion mechanism across multiple tumor types. P38 knockdown in cancer cell lines increases T cell migration, and p38 inhibition plus ICI in preclinical models shows greater efficacy compared to monotherapies. In a clinical trial of patients refractory to PD1/L1 therapy, pexmetinib, a p38 inhibitor, plus nivolumab demonstrated deep and durable clinical responses. Targeting of p38 with anti-PD1 has the potential to induce the T cell-inflamed phenotype and overcome immunotherapy resistance.

9.
Artículo en Inglés | MEDLINE | ID: mdl-34660908

RESUMEN

AIM: Leelamine (LLM) inhibits growth of human prostate cancer cells but the underlying mechanism is not fully understood. The present study was undertaken to determine the effect of LLM on cMyc, which is overexpressed in a subset of human prostate cancers. METHODS: The effect of LLM on cMyc expression and activity was determined by western blotting/confocal microscopy and luciferase reporter assay, respectively. A transgenic mouse model of prostate cancer (Hi-Myc) was used to determine chemopreventive efficacy of LLM. RESULTS: Exposure of androgen sensitive (LNCaP) and castration-resistant (22Rv1) human prostate cancer cells to LLM resulted in downregulation of protein and mRNA levels of cMyc. Overexpression of cMyc partially attenuated LLM-mediated inhibition of colony formation, cell viability, and cell migration in 22Rv1 and/or PC-3 cells. LLM treatment decreased protein levels of cMyc targets (e.g., lactate dehydrogenase), however, overexpression of cMyc did not attenuate these effects. A trend for a decrease in expression level of cMyc protein was discernible in 22Rv1 xenografts from LLM-treated mice compared with control mice. The LLM treatment (10 mg/kg body weight, 5 times/week) was well-tolerated by Hi-Myc transgenic mice. The incidence of high-grade prostatic intraepithelial neoplasia, adenocarcinoma in situ, and microinvasion was lower in LLM-treated Hi-Myc mice but the difference was not statistically significant. CONCLUSION: The present study reveals that LLM inhibits cMyc expression in human prostate cancer cells in vitro but concentrations higher than 10 mg/kg may be required to achieve chemoprevention of prostate cancer.

10.
Cancer Prev Res (Phila) ; 14(4): 421-432, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33509807

RESUMEN

Elimination of both rapidly dividing epithelial mammary cancer cells as well as breast cancer stem-like cells (bCSC) is essential for maximizing antitumor response. Withaferin A (WA), a small molecule derived from a medicinal plant (Withania somnifera), is highly effective in reducing burden and/or incidence of breast cancer in vivo in various preclinical models. We have shown previously that suppression of breast cancer incidence by WA administration in a rat model is associated with a decrease in self-renewal of bCSC but the underlying mechanism is still elusive. This study investigated the role of forkhead box Q1 (FoxQ1) transcription factor in antitumor responses to WA. Exposure of MDA-MB-231 and SUM159 cells to WA resulted in downregulation of protein and mRNA levels of FoxQ1 as well as inhibition of its transcriptional activity. FoxQ1 overexpression in SUM159 and MCF-7 cells resulted in a marked protection against WA-mediated inhibition of bCSC as judged by flow cytometric analysis of CD49fhigh population and mammosphere assay. RNA-sequencing analysis revealed upregulation of many bCSC-associated genes by FoxQ1 overexpression in SUM159 cells, including IL8 whose expression was decreased by WA treatment in SUM159 and MCF-7 cells. FoxQ1 was recruited to the promoter of IL8 that was inhibited significantly by WA treatment. On the other hand, WA-mediated inhibition of cell proliferation or migration was not affected by FoxQ1 overexpression. The FoxQ1 overexpression partially attenuated WA-mediated G2-M phase cell cycle arrest in SUM159 cells only. These results indicate that FoxQ1 is a target of WA for inhibition of bCSC fraction. PREVENTION RELEVANCE: Withaferin A (WA) is highly effective in reducing burden and/or incidence of breast cancer in various preclinical models. However, the mechanism underlying breast cancer prevention by WA is not fully understood. This study shows a role for FoxQ1 in antitumor response to WA.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Witanólidos/farmacología , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Factores de Transcripción Forkhead/genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Tumorales Cultivadas
11.
Oncogene ; 40(3): 592-602, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199826

RESUMEN

A subset of human prostate cancer exhibits increased de novo synthesis of fatty acids, but the molecular driver(s) of this metabolic abnormality remains obscure. This study demonstrates a novel metabolic function of c-Myc (Myc) in regulation of fatty acid synthesis. The role of Myc in regulation of fatty acid synthesis was investigated by: (a) interrogation of the prostate cancer The Cancer Genome Atlas (TCGA) dataset, (b) chromatin immunoprecipitation, and (c) determination of the expression of fatty acid synthesis enzymes and targeted metabolomics using a mouse model and human specimens. The expression of MYC was positively associated with that of key fatty acid synthesis genes including ACLY, ACC1, and FASN in prostate cancer TCGA dataset. Chromatin immunoprecipitation revealed Myc occupancy at the promoters of ACLY, ACC1, and FASN. Prostate-specific overexpression of Myc in Hi-Myc transgenic mice resulted in overexpression of ACLY, ACC1, and FASN proteins in neoplastic lesions and increased circulating levels of total free fatty acids. Targeted metabolomics confirmed increased circulating levels of individual fatty acids in the plasma of Hi-Myc mice and human subjects when compared to corresponding controls. Immunohistochemistry also revealed a positive and statistically significant association in expression of Myc with that of ACC1 in human prostate adenocarcinoma specimens. We propose that Myc-regulated fatty acid synthesis is a valid target for therapy and/or prevention of prostate cancer.


Asunto(s)
Ácidos Grasos/biosíntesis , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Ácidos Grasos/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-myc/genética
12.
Cancer Prev Res (Phila) ; 13(9): 721-734, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32727824

RESUMEN

Withaferin A (hereafter abbreviated as WA) is a promising anticancer steroidal lactone abundant in a medicinal plant (Withania somnifera) native to Asia. The root/leaf extract of Withania somnifera, which belongs to the Solanaceae family, continues to be included in the Ayurvedic medicine formulations of alternative medicine practice. Numerous chemicals are detectable in the root/leaf extract of Withania somnifera [e.g., withanolides (WA, withanone, withanolide A, etc.), alkaloids, sitoindosides, etc.], but the anticancer effect of this medicinal plant is largely attributed to WA. Anticancer effect of WA was initially reported in the early 70s in the Ehrlich ascites tumor cell model in vitro Since then, numerous preclinical studies have been performed using cellular and animal models of different cancers including breast cancer to determine cancer therapeutic and chemopreventive effects of WA. Chemoprevention, a word first introduced by Dr. Michael B. Sporn, was intended to impede, arrest, or reverse carcinogenesis at its earliest stages with pharmacologic agents. This review succinctly summarizes the published findings on anticancer pharmacology of WA in breast cancer focusing on pharmacokinetic behavior, in vivo efficacy data in preclinical models in a therapeutic and chemoprevention settings, and its known effects on cancer-relevant cellular processes (e.g., growth arrest, apoptosis induction, autophagy, metabolic adaptation, immune function, etc.) and molecular targets (e.g., suppression of oncogenes such as estrogen receptor-α, STAT3, etc.). Potential gaps in knowledge as well as future research directions essential for clinical development of WA for chemoprevention and/or treatment of breast cancer are also discussed.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Witanólidos/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/prevención & control , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Medicina Ayurvédica/métodos , Withania/química , Witanólidos/farmacología
13.
J Cancer Prev ; 25(1): 1-12, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32266174

RESUMEN

Previous studies have demonstrated inhibitory effect of garlic component diallyl trisulfide (DATS) on growth of breast cancer cells in vitro and in vivo. This study investigated the effect of DATS on oncogenic signaling regulated by leptin, which plays an important role in breast carcinogenesis. Leptin-induced phosphorylation and nuclear translocation of STAT3 was inhibited significantly in the presence of DATS in MCF-7 (a luminal-type human breast cancer cell line) and MDA-MB-231 (a basal-like human breast cancer cell line). Leptin-stimulated cell proliferation, clonogenic cell survival, and migration and/or invasion ability in MCF-7 and/or MDA-MB-231 cells were also suppressed by DATS treatment. DATS exposure resulted in inhibition of leptin-stimulated expression of protein and/or mRNA levels of Bcl-2, Bcl-xL, Cyclin D1, vascular endothelial growth factor, and matrix metalloproteinase-2. Western blotting revealed a decrease in protein levels of phosphorylated STAT3 in breast cancer xenografts from DATS-treated mice when compared to controls in vivo. However, the incidence of N-methyl-N-nitrosourea-induced luminal-type breast cancer development in rats was not affected by oral administration of 5 mg/kg or 25 mg/kg DATS. The present study reveals that oncogenic signaling induced by leptin is inhibited in the presence of DATS but higher doses of this phytochemical may be required to achieve chemopreventive activity.

14.
J Tradit Complement Med ; 10(3): 188-197, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32670813

RESUMEN

Prior research argues for a role of increased de novo fatty acid synthesis in pathogenesis of prostate adenocarcinoma, which remains a leading cause of cancer-associated mortality in American men. A safe and effective inhibitor of fatty acid synthesis is still a clinically unmet need. Herein, we investigated the effect of ethanol extract of Withania somnifera root (WRE) standardized for one of its components (withaferin A) on fatty acid synthesis using LNCaP and 22Rv1 human prostate cancer cells. Withania somnifera is a medicinal plant used in the Ayurvedic medicine practiced in India. Western blotting and confocal microscopy revealed a statistically significant decrease in protein levels of key fatty acid metabolism enzymes including ATP citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A) in WRE-treated cells compared with solvent control. The mRNA levels of ACLY, ACC1, FASN, and CPT1A were also lower in WRE-treated cells in comparison with control. Consequently, WRE treatment resulted in a significant decrease in intracellular levels of acetyl-CoA, total free fatty acids, and neutral lipid droplets in both LNCaP and 22Rv1 cells. WRE exhibited greater potency for fatty acid synthesis inhibition at equimolar concentration than cerulenin and etomoxir. Exposure to WRE results in downregulation of c-Myc and p-Akt(S473) proteins in 22Rv1 cell line. However, overexpression of only c-Myc conferred protection against clonogenic cell survival and lipogenesis inhibition by WRE. In conclusion, these results indicate that WRE is a novel inhibitor of fatty acid synthesis in human prostate cancer cells.

15.
Cancer Prev Res (Phila) ; 13(8): 661-672, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32434809

RESUMEN

Prostate cancer chemoprevention by sulforaphane, which is a metabolic by-product of glucoraphanin found in broccoli, in preclinical models is associated with induction of both apoptosis and autophagy. However, the molecular mechanism underlying sulforaphane-mediated autophagy, which is protective against apoptotic cell death by this phytochemical, is still poorly understood. This study demonstrates a role for lysosome-associated membrane protein 2 (LAMP2) in sulforaphane-mediated autophagy and apoptosis. Western blotting revealed dose-dependent induction of LAMP2 protein after treatment with sulforaphane as well as its naturally occurring analogs in PC-3 and 22Rv1 human prostate cancer cell lines that was confirmed by microscopy (sulforaphane). The mRNA level of LAMP2 was also increased upon treatment with sulforaphane in both cell lines. Sulforaphane-mediated increase in the level of autophagy marker microtubule-associated protein light-chain 3B was augmented by RNAi of LAMP2 in PC-3 and 22Rv1 cells. Apoptosis induction by sulforaphane treatment was also increased significantly by knockdown of the LAMP2 protein in PC-3 and 22Rv1 cells. Augmentation of sulforaphane-mediated apoptosis by RNAi of LAMP2 was accompanied by induction and activation of proapoptotic protein Bak. Oral administration of sulforaphane to TRAMP mice also resulted in induction of LAMP2 protein expression. Targeted microarray in sulforaphane-treated PC-3 cells revealed induction of many autophagy-related genes (e.g., HSP90AA1, NRF2, etc) and their expression positively correlated with that of LAMP2 in prostate cancer The Cancer Genome Atlas. In conclusion, this study reveals that induction of LAMP2 by sulforaphane inhibits its ability to induce apoptotic cell death at least in human prostate cancer cells.


Asunto(s)
Adenocarcinoma/prevención & control , Anticarcinógenos/farmacología , Isotiocianatos/farmacología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Neoplasias de la Próstata/prevención & control , Sulfóxidos/farmacología , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Anticarcinógenos/uso terapéutico , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Isotiocianatos/uso terapéutico , Masculino , Ratones , Ratones Transgénicos , Próstata/efectos de los fármacos , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Sulfóxidos/uso terapéutico
16.
Mol Cancer Ther ; 19(2): 420-431, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31784454

RESUMEN

Bone is the most preferred site for colonization of metastatic breast cancer cells for each subtype of the disease. The standard of therapeutic care for breast cancer patients with bone metastasis includes bisphosphonates (e.g., zoledronic acid), which have poor oral bioavailability, and a humanized antibody (denosumab). However, these therapies are palliative, and a subset of patients still develop new bone lesions and/or experience serious adverse effects. Therefore, a safe and orally bioavailable intervention for therapy of osteolytic bone resorption is still a clinically unmet need. This study demonstrates suppression of breast cancer-induced bone resorption by a small molecule (sulforaphane, SFN) that is safe clinically and orally bioavailable. In vitro osteoclast differentiation was inhibited in a dose-dependent manner upon addition of conditioned media from SFN-treated breast cancer cells representative of different subtypes. Targeted microarrays coupled with interrogation of The Cancer Genome Atlas data set revealed a novel SFN-regulated gene signature involving cross-regulation of runt-related transcription factor 2 (RUNX2) and nuclear factor-κB and their downstream effectors. Both RUNX2 and p65/p50 expression were higher in human breast cancer tissues compared with normal mammary tissues. RUNX2 was recruited at the promotor of NFKB1 Inhibition of osteoclast differentiation by SFN was augmented by doxycycline-inducible stable knockdown of RUNX2. Oral SFN administration significantly increased the percentage of bone volume/total volume of affected bones in the intracardiac MDA-MB-231-Luc model indicating in vivo suppression of osteolytic bone resorption by SFN. These results indicate that SFN is a novel inhibitor of breast cancer-induced osteolytic bone resorption in vitro and in vivo.


Asunto(s)
Neoplasias Óseas/secundario , Resorción Ósea/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Redes Reguladoras de Genes/genética , Isotiocianatos/uso terapéutico , Animales , Femenino , Humanos , Isotiocianatos/farmacología , Ratones , Sulfóxidos
17.
Mol Cancer Ther ; 18(10): 1800-1810, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31395683

RESUMEN

Increased de novo synthesis of fatty acids is implicated in the pathogenesis of human prostate cancer, but a safe and effective clinical inhibitor of this metabolic pathway is still lacking. We have shown previously that leelamine (LLM) suppresses transcriptional activity of androgen receptor, which is known to regulate fatty acid synthesis. Therefore, the current study was designed to investigate the effect of LLM on fatty acid synthesis. Exposure of 22Rv1, LNCaP, and PC-3 prostate cancer cells, but not RWPE-1 normal prostate epithelial cell line, to LLM resulted in a decrease in intracellular levels of neutral lipids or total free fatty acids. LLM was superior to another fatty acid synthesis inhibitor (cerulenin) for suppression of total free fatty acid levels. LLM treatment downregulated protein and/or mRNA expression of key fatty acid synthesis enzymes, including ATP citrate lyase, acetyl-CoA carboxylase 1, fatty acid synthase, and sterol regulatory element-binding protein 1 (SREBP1) in each cell line. Consistent with these in vitro findings, we also observed a significant decrease in ATP citrate lyase and SREBP1 protein expression as well as number of neutral lipid droplets in vivo in 22Rv1 tumor sections of LLM-treated mice when compared with that of controls. LLM-mediated suppression of intracellular levels of total free fatty acids and neutral lipids was partly attenuated by overexpression of SREBP1. In conclusion, these results indicate that LLM is a novel inhibitor of SREBP1-regulated fatty acid/lipid synthesis in prostate cancer cells that is not affected by androgen receptor status.


Asunto(s)
Abietanos/farmacología , Lipogénesis/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ATP Citrato (pro-S)-Liasa/metabolismo , Línea Celular Tumoral , Ceruletida/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Ácidos Grasos no Esterificados/metabolismo , Humanos , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Próstata/metabolismo , Próstata/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Androgénicos/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
18.
Mol Cancer Ther ; 17(10): 2079-2090, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30030299

RESUMEN

Clinical management of castration-resistant prostate cancer (CRPC) resulting from androgen deprivation therapy remains challenging. CRPC is driven by aberrant activation of androgen receptor (AR) through mechanisms ranging from its amplification, mutation, post-translational modification, and expression of splice variants (e.g., AR-V7). Herein, we present experimental evidence for therapeutic vulnerability of CRPC to a novel phytochemical, leelamine (LLM), derived from pine tree bark. Exposure of human prostate cancer cell lines LNCaP (an androgen-responsive cell line with mutant AR), C4-2B (an androgen-insensitive variant of LNCaP), and 22Rv1 (a CRPC cell line with expression of AR-Vs), and a murine prostate cancer cell line Myc-CaP to plasma achievable concentrations of LLM resulted in ligand-dependent (LNCaP) and ligand-independent (22Rv1) growth inhibition in vitro that was accompanied by downregulation of mRNA and/or protein levels of full-length AR as well as its splice variants, including AR-V7. LLM treatment resulted in apoptosis induction in the absence and presence of R1881. In silico modeling followed by luciferase reporter assay revealed a critical role for noncovalent interaction of LLM with Y739 in AR activity inhibition. Substitution of the amine group with an isothiocyanate functional moiety abolished AR and cell viability inhibition by LLM. Administration of LLM resulted in 22Rv1 xenograft growth suppression that was statistically insignificant but was associated with a significant decrease in Ki-67 expression, mitotic activity, expression of full-length AR and AR-V7 proteins, and secretion of PSA. This study identifies a novel chemical scaffold for the treatment of CRPC. Mol Cancer Ther; 17(10); 2079-90. ©2018 AACR.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Antagonistas de Andrógenos/química , Antagonistas de Andrógenos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Conformación Molecular , Simulación del Acoplamiento Molecular , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Unión Proteica , Transporte de Proteínas , Receptores Androgénicos/química , Relación Estructura-Actividad , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cancer Prev Res (Phila) ; 11(6): 337-346, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29545400

RESUMEN

We have shown previously that dietary administration of phenethyl isothiocyanate (PEITC), a small molecule from edible cruciferous vegetables, significantly decreases the incidence of poorly differentiated prostate cancer in Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice without any side effects. In this study, we investigated the role of c-Myc-regulated glycolysis in prostate cancer chemoprevention by PEITC. Exposure of LNCaP (androgen-responsive) and 22Rv1 (castration-resistant) human prostate cancer cells to PEITC resulted in suppression of expression as well as transcriptional activity of c-Myc. Prostate cancer cell growth inhibition by PEITC was significantly attenuated by stable overexpression of c-Myc. Analysis of the RNA-Seq data from The Cancer Genome Atlas indicated a significant positive association between Myc expression and gene expression of many glycolysis-related genes, including hexokinase II and lactate dehydrogenase A Expression of these enzyme proteins and lactate levels were decreased upon PEITC treatment in prostate cancer cells, and these effects were significantly attenuated by ectopic expression of c-Myc. A normal prostate stromal cell line (PrSC) was resistant to lactic acid suppression by PEITC treatment. Prostate cancer chemoprevention by PEITC in TRAMP mice was associated with a significant decrease in plasma lactate and pyruvate levels. However, a 1-week intervention with 10 mg PEITC (orally, 4 times/day) was not sufficient to decrease lactate levels in the serum of human subjects. These results indicated that although prostate cancer prevention by PEITC in TRAMP mice was associated with suppression of glycolysis, longer than 1-week intervention might be necessary to observe such an effect in human subjects. Cancer Prev Res; 11(6); 337-46. ©2018 AACR.


Asunto(s)
Adenocarcinoma/prevención & control , Anticarcinógenos/farmacología , Glucólisis , Glicoproteínas/antagonistas & inhibidores , Isotiocianatos/farmacología , Neoplasias de la Próstata/prevención & control , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Humanos , Masculino , Ratones , Ratones Transgénicos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas
20.
Cancer Prev Res (Phila) ; 10(5): 279-289, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28292742

RESUMEN

Increased de novo synthesis of fatty acids is a distinctive feature of prostate cancer, which continues to be a leading cause of cancer-related deaths among American men. Therefore, inhibition of de novo fatty acid synthesis represents an attractive strategy for chemoprevention of prostate cancer. We have shown previously that dietary feeding of phenethyl isothiocyanate (PEITC), a phytochemical derived from edible cruciferous vegetables such as watercress, inhibits incidence and burden of poorly differentiated prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) model. The current study was designed to test the hypothesis of whether fatty acid intermediate(s) can serve as noninvasive biomarker(s) of prostate cancer chemoprevention by PEITC using archived plasma and tumor specimens from the TRAMP study as well as cellular models of prostate cancer. Exposure of prostate cancer cells (LNCaP and 22Rv1) to pharmacologic concentrations of PEITC resulted in downregulation of key fatty acid metabolism proteins, including acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A). The mRNA expression of FASN and CPT1A as well as acetyl-CoA levels were decreased by PEITC treatment in both cell lines. PEITC administration to TRAMP mice also resulted in a significant decrease in tumor expression of FASN protein. Consistent with these findings, the levels of total free fatty acids, total phospholipids, triglyceride, and ATP were significantly lower in the plasma and/or prostate tumors of PEITC-treated TRAMP mice compared with controls. The current study is the first to implicate inhibition of fatty acid synthesis in prostate cancer chemoprevention by PEITC. Cancer Prev Res; 10(5); 279-89. ©2017 AACR.


Asunto(s)
Adenocarcinoma/prevención & control , Anticarcinógenos/farmacología , Biomarcadores de Tumor/análisis , Ácidos Grasos/metabolismo , Isotiocianatos/farmacología , Neoplasias de la Próstata/prevención & control , Animales , Quimioprevención , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA