Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rheumatol Int ; 42(2): 215-239, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35013839

RESUMEN

The study proposes a novel machine learning (ML) paradigm for cardiovascular disease (CVD) detection in individuals at medium to high cardiovascular risk using data from a Greek cohort of 542 individuals with rheumatoid arthritis, or diabetes mellitus, and/or arterial hypertension, using conventional or office-based, laboratory-based blood biomarkers and carotid/femoral ultrasound image-based phenotypes. Two kinds of data (CVD risk factors and presence of CVD-defined as stroke, or myocardial infarction, or coronary artery syndrome, or peripheral artery disease, or coronary heart disease) as ground truth, were collected at two-time points: (i) at visit 1 and (ii) at visit 2 after 3 years. The CVD risk factors were divided into three clusters (conventional or office-based, laboratory-based blood biomarkers, carotid ultrasound image-based phenotypes) to study their effect on the ML classifiers. Three kinds of ML classifiers (Random Forest, Support Vector Machine, and Linear Discriminant Analysis) were applied in a two-fold cross-validation framework using the data augmented by synthetic minority over-sampling technique (SMOTE) strategy. The performance of the ML classifiers was recorded. In this cohort with overall 46 CVD risk factors (covariates) implemented in an online cardiovascular framework, that requires calculation time less than 1 s per patient, a mean accuracy and area-under-the-curve (AUC) of 98.40% and 0.98 (p < 0.0001) for CVD presence detection at visit 1, and 98.39% and 0.98 (p < 0.0001) at visit 2, respectively. The performance of the cardiovascular framework was significantly better than the classical CVD risk score. The ML paradigm proved to be powerful for CVD prediction in individuals at medium to high cardiovascular risk.


Asunto(s)
Artritis Reumatoide/complicaciones , Enfermedades Cardiovasculares/diagnóstico , Aprendizaje Automático , Placa Aterosclerótica/diagnóstico por imagen , Arterias Carótidas/diagnóstico por imagen , Estudios Transversales , Femenino , Arteria Femoral/diagnóstico por imagen , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Proyectos Piloto , Reproducibilidad de los Resultados
2.
Comput Biol Med ; 150: 106018, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36174330

RESUMEN

OBJECTIVE: Cardiovascular disease (CVD) is a major healthcare challenge and therefore early risk assessment is vital. Previous assessment techniques use either "conventional CVD risk calculators (CCVRC)" or machine learning (ML) paradigms. These techniques are ad-hoc, unreliable, not fully automated, and have variabilities. We, therefore, introduce AtheroEdge-MCDLAI (AE3.0DL) windows-based platform using multiclass Deep Learning (DL) system. METHODS: Data was collected on 500 patients having both carotid ultrasound and corresponding coronary angiography scores (CAS), measured as stenosis in coronary arteries and considered as the gold standard. A total of 39 covariates were used, clubbed into three clusters, namely (i) Office-based: age, gender, body mass index, smoker, hypertension, systolic blood pressure, and diastolic blood pressure; (ii) Laboratory-based: Hyperlipidemia, hemoglobin A1c, and estimated glomerular filtration rate; and (iii) Carotid ultrasound image phenotypes: maximum plaque height, total plaque area, and intra-plaque neovascularization. Baseline characteristics for four classes (target labels) having significant (p < 0.0001) values were calculated using Chi-square and ANOVA. For handling the cohort's imbalance in the risk classes, AE3.0DL used the synthetic minority over-sampling technique (SMOTE). AE3.0DL used Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) DL models and the performance (accuracy and area-under-the-curve) was computed using 10-fold cross-validation (90% training, 10% testing) frameworks. AE3.0DL was validated and benchmarked. RESULTS: The AE3.0DL using RNN and LSTM showed an accuracy and AUC (p < 0.0001) pairs as (95.00% and 0.98), and (95.34% and 0.99), respectively, and showed an improvement of 32.93% and 9.94% against CCVRC and ML, respectively. AE3.0DL runs in <1 s. CONCLUSION: DL algorithms are a powerful paradigm for coronary artery disease (CAD) risk prediction and CVD risk stratification.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades de las Arterias Carótidas , Enfermedad de la Arteria Coronaria , Aprendizaje Profundo , Placa Aterosclerótica , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Ultrasonografía de las Arterias Carótidas , Inteligencia Artificial , Arterias Carótidas/diagnóstico por imagen , Ultrasonografía/métodos , Factores de Riesgo , Placa Aterosclerótica/diagnóstico por imagen , Medición de Riesgo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA