Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(38): 15180-8, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23934049

RESUMEN

Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases.


Asunto(s)
Receptores de Folato Anclados a GPI/química , Antagonistas del Ácido Fólico/metabolismo , Ácido Fólico/metabolismo , Modelos Moleculares , Conformación Proteica , Animales , Células CHO , Cromatografía de Afinidad , Cricetinae , Cricetulus , Cristalización , Receptores de Folato Anclados a GPI/genética , Humanos , Estructura Molecular , Reacción en Cadena de la Polimerasa , Transporte de Proteínas/genética
2.
Biochemistry ; 53(50): 7870-83, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25427234

RESUMEN

Dug1p, a M20 family metallopeptidase and human orthologue of carnosinase, hydrolyzes Cys-Gly dipeptide, the last step of glutathione (GSH) degradation in Saccharomyces cerevisiae. Molecular bases of peptide recognition by Dug1p and other M20 family peptidases remain unclear in the absence of structural information about enzyme-peptide complexes. We report the crystal structure of Dug1p at 2.55 Å resolution in complex with a Gly-Cys dipeptide and two Zn(2+) ions. The dipeptide is trapped in the tunnel-like active site; its C-terminus is held by residues at the S1' binding pocket, whereas the S1 pocket coordinates Zn(2+) ions and the N-terminus of the peptide. Superposition with the carnosinase structure shows that peptide mimics the inhibitor bestatin, but active site features are altered upon peptide binding. The space occupied by the N-terminus of bestatin is left unoccupied in the Dug1p structure, suggesting that tripeptides could bind. Modeling of tripeptides into the Dug1p active site showed tripeptides fit well. Guided by the structure and modeling, we examined the ability of Dug1p to hydrolyze tripeptides, and results show that Dug1p hydrolyzes tripeptides selectively. Point mutations of catalytic residues do not abolish the peptide binding but abolish the hydrolytic activity, suggesting a noncooperative mode in peptide recognition. In summary, results reveal that peptides are recognized primarily through their amino and carboxyl termini, but hydrolysis depends on the properties of peptide substrates, dictated by their respective sequences. Structural similarity between the Dug1p-peptide complex and the bestatin-bound complex of CN2 suggests that the Dug1p-peptide structure can be used as a template for designing natural peptide inhibitors.


Asunto(s)
Dipeptidasas/química , Metaloproteasas/química , Modelos Moleculares , Péptidos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Zinc/química , Sitios de Unión , Cristalografía por Rayos X , Dipeptidasas/genética , Dipeptidasas/metabolismo , Humanos , Metaloproteasas/genética , Metaloproteasas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína , Zinc/metabolismo
3.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1633-44, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23999287

RESUMEN

The enzymes 3,4-dihydroxy-2-butanone 4-phosphate synthase (DHBPS) and GTP cyclohydrolase II (GCHII) catalyze the initial steps of both branches of the bacterial riboflavin-biosynthesis pathway. The structures and molecular mechanisms of DHBPS and GCHII as separate polypeptides are known; however, their organization and molecular mechanism as a bifunctional enzyme are unknown to date. Here, the crystal structure of an essential bifunctional DHBPS/GCHII enzyme from Mycobacterium tuberculosis (Mtb-ribA2) is reported at 3.0 Šresolution. The crystal structure revealed two conformationally different molecules of Mtb-ribA2 in the asymmetric unit that form a dimer via their GCHII domains. Interestingly, analysis of the crystal packing revealed a long `helical-like oligomer' formed by DHBPS and GCHII functional homodimers, thus generating an `open-ended' unit-cell lattice. However, size-exclusion chromatography studies suggest that Mtb-ribA2 exists as a dimer in solution. To understand the discrepancy between the oligomerization observed in solution and in the crystal structure, the DHBPS (Mtb-DHBPS) and GCHII (Mtb-GCHII) domains of Mtb-ribA2 have been cloned, expressed and purified as His-tagged proteins. Size-exclusion chromatography studies indicated that Mtb-GCHII is a dimer while Mtb-DHBPS exists as a monomer in solution. Moreover, kinetic studies revealed that the GCHII activities of Mtb-ribA2 and Mtb-GCHII are similar, while the DHBPS activity of Mtb-ribA2 is much higher than that of Mtb-DHBPS alone. Taken together, the results strongly suggest that Mtb-ribA2 exists as a dimer formed through its GCHII domains and requires full-length Mtb-ribA2 for optimal DHBPS activity.


Asunto(s)
Proteínas Bacterianas/química , GTP Ciclohidrolasa/química , Transferasas Intramoleculares/química , Enzimas Multifuncionales/química , Mycobacterium tuberculosis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/fisiología , Cristalografía por Rayos X , GTP Ciclohidrolasa/fisiología , Transferasas Intramoleculares/fisiología , Enzimas Multifuncionales/fisiología , Multimerización de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
4.
J Struct Biol ; 174(2): 374-84, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21296160

RESUMEN

3,4-dihydroxy 2-butanone 4-phosphate synthase (DHBPS) and GTP cyclohydrolase-II (GTPCH-II) are the two initial enzymes involved in riboflavin biosynthesis pathway, which has been shown to be essential for the pathogens. In Mycobacterium tuberculosis (Mtb), the ribA2 gene (Rv1415) encodes for the bi-functional enzyme with DHBPS and GTPCH-II domains at N- and C-termini, respectively. We have determined three crystal structures of Mtb-DHBPS domain in complex with phosphate and glycerol at pH 6.0, with sulphate at pH 4.0 and with zinc and sulphate at pH 4.0 at 1.8, 2.06 and 2.06 Å resolution, respectively. The hydrodynamic volume and enzyme activity studies revealed that the Mtb-DHBPS domain forms a functional homo-dimer between the pH 6.0 and 9.0, however, at pH 5.0 and below, it forms a stable inactive monomer in solution. Furthermore, the functional activity of Mtb-DHBPS and its dimeric state could be restored by increasing the pH between 6.0 and 9.0. The comparison of crystal structures determined at different pH revealed that the overall three-dimensional structure of Mtb-DHBPS monomer remains the same. However, the length of the α6-helix at pH 6.0 has increased from 15 to 22 Å in pH 4.0 by increasing the number of amino acids contributing to the α6-helix from 11 to 15, achieving a higher structural stability at pH 4.0. Taken together our experiments strongly suggest that the Mtb-DHBPS domain can transit between inactive monomer to active dimer depending upon its pH values, both in solution as well in crystal structure.


Asunto(s)
Proteínas Bacterianas/química , Transferasas Intramoleculares/química , Mycobacterium tuberculosis/enzimología , Fragmentos de Péptidos/química , Multimerización de Proteína , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido
5.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 2): 131-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21245535

RESUMEN

Riboflavin biosynthesis is an essential pathway in bacteria, in contrast to animals, which obtain riboflavin from their diet. Therefore, the enzymes involved in the riboflavin-biosynthesis pathway are potential targets for the development of antibacterial drugs. Lumazine synthase, an enzyme that is involved in the penultimate step of riboflavin biosynthesis, catalyzes the formation of 6,7-dimethyl-8-ribityllumazine from 3,4-dihydroxy-2-butanone 4-phosphate and 5-amino-6-ribitylamino-2,4-(1H,3H)-pyrimidinedione. Lumazine synthase from Salmonella typhimurium (sLS) has been cloned, overexpressed, purified and was crystallized in three forms, each with different crystal packing. The crystal structure of sLS in the monoclinic space group P2(1) has been determined with 60 subunits per asymmetric unit, packed as an icosahedron, at 3.57 Šresolution. Interestingly, sLS contains an N-terminal proline residue (Pro11) which had previously been suggested to disrupt the formation of the icosohedral assembly. In addition, comparison of the structure of sLS with known orthologous lumazine synthase structures allowed identification of the amino-acid residues involved in substrate binding and catalysis. The sLS structure reported here could serve as a starting point for the development of species-specific antibacterial drugs.


Asunto(s)
Complejos Multienzimáticos/química , Salmonella typhimurium/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/aislamiento & purificación , Complejos Multienzimáticos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato
6.
Proteins ; 78(16): 3292-303, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20806221

RESUMEN

3,4-Dihydroxy-2-butanone-4-phosphate synthase (DHBPS) encoded by ribB gene is one of the first enzymes in riboflavin biosynthesis pathway and catalyzes the conversion of ribulose-5-phosphate (Ru5P) to 3,4-dihydroxy-2-butanone-4-phosphate and formate. DHBPS is an attractive target for developing anti-bacterial drugs as this enzyme is essential for pathogens, but absent in humans. The recombinant DHBPS enzyme of Salmonella requires magnesium ion for its activity and catalyzes the formation of 3,4-dihydroxy-2-butanone-4-phosphate from Ru5P at a rate of 199 nmol min(-1) mg(-1) with K(m) value of 116 µM at 37°C. Further, we have determined the crystal structures of Salmonella DHBPS in complex with sulfate, Ru5P and sulfate-zinc ion at a resolution of 2.80, 2.52, and 1.86 Å, respectively. Analysis of these crystal structures reveals that the acidic loop (residues 34-39) responsible for the acid-base catalysis is disordered in the absence of substrate or metal ion at the active site. Upon binding either substrate or sulfate and metal ions, the acidic loop becomes stabilized, adopts a closed conformation and interacts with the substrate. Our structure for the first time reveals that binding of substrate Ru5P alone is sufficient for the stabilization of the acidic active site loop into a closed conformation. In addition, the Glu38 residue from the acidic active site loop undergoes a conformational change upon Ru5P binding, which helps in positioning the second metal ion that stabilizes the Ru5P and the reaction intermediates. This is the first structural report of DHBPS in complex with either substrate or metal ion from any eubacteria.


Asunto(s)
Antibacterianos/farmacología , Transferasas Intramoleculares/antagonistas & inhibidores , Transferasas Intramoleculares/química , Salmonella typhimurium/enzimología , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Pruebas de Enzimas , Transferasas Intramoleculares/aislamiento & purificación , Cinética , Metales/metabolismo , Modelos Moleculares , Ribulosafosfatos/metabolismo , Salmonella typhimurium/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Sulfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA