Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445429

RESUMEN

The prevalence of neurodegenerative disease (ND) is increasing, partly owing to extensions in lifespan, with a larger percentage of members living to an older age, but the ND aetiology and pathogenesis are not fully understood, and effective treatments are still lacking. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis are generally thought to progress as a consequence of genetic susceptibility and environmental influences. Up to now, several environmental triggers have been associated with NDs, and recent studies suggest that some cyanotoxins, produced by cyanobacteria and acting through a variety of molecular mechanisms, are highly neurotoxic, although their roles in neuropathy and particularly in NDs are still controversial. In this review, we summarize the most relevant and recent evidence that points at cyanotoxins as environmental triggers in NDs development.


Asunto(s)
Toxinas Bacterianas/toxicidad , Cianobacterias/patogenicidad , Enfermedades Neurodegenerativas/etiología , Animales , Cianobacterias/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/microbiología
2.
J Cell Mol Med ; 23(12): 8505-8510, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31560168

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). The LRRK2 physiological and pathological function is still debated. However, different experimental evidence based on LRRK2 cellular localization and LRRK2 protein interactors suggests that LRRK2 may be part and regulate a protein network modulating vesicle dynamics/trafficking. Interestingly, the synaptic vesicle protein SV2A is part of this protein complex. Importantly, SV2A is the binding site of the levetiracetam (LEV), a compound largely used in human therapy for epilepsy treatment. The binding of LEV to SV2A reduces the neuronal firing by the modulation of vesicle trafficking although by an unclear molecular mechanism. In this short communication, we have analysed the interaction between the LRRK2 and SV2A pathways by LEV treatment. Interestingly, LEV significantly counteracts the effect of LRRK2 G2019S pathological mutant expression in three different cellular experimental models. Our data strongly suggest that LEV treatment may have a neuroprotective effect on LRRK2 pathological mutant toxicity and that LEV repositioning could be a viable compound for PD treatment.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Levetiracetam/farmacología , Mutación , Neuronas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Animales , Anticonvulsivantes/farmacología , Línea Celular Tumoral , Células Cultivadas , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Células PC12 , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Unión Proteica , Ratas , Transducción de Señal/efectos de los fármacos
3.
Front Immunol ; 15: 1360068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596666

RESUMEN

The complex interplay between genetic and environmental factors is considered the cause of neurodegenerative diseases including Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Among the environmental factors, toxins produced by cyanobacteria have received much attention due to the significant increase in cyanobacteria growth worldwide. In particular, L-BMAA toxin, produced by diverse taxa of cyanobacteria, dinoflagellates and diatoms, has been extensively correlated to neurodegeneration. The molecular mechanism of L-BMAA neurotoxicity is still cryptic and far from being understood. In this research article, we have investigated the molecular pathways altered by L-BMAA exposure in cell systems, highlighting a significant increase in specific stress pathways and an impairment in autophagic processes. Interestingly, these changes lead to the accumulation of both α-synuclein and TDP43, which are correlated with PD and ALS proteinopathy, respectively. Finally, we were able to demonstrate specific alterations of TDP43 WT or pathological mutants with respect to protein accumulation, aggregation and cytoplasmic translocation, some of the typical features of both sporadic and familial ALS.


Asunto(s)
Aminoácidos Diaminos , Esclerosis Amiotrófica Lateral , Cianobacterias , Enfermedad de Parkinson , Humanos , Esclerosis Amiotrófica Lateral/patología , alfa-Sinucleína , Toxinas de Cianobacterias , Aminoácidos Diaminos/toxicidad
4.
Cells ; 10(2)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498474

RESUMEN

Mutations in LRRK2 play a critical role in both familial and sporadic Parkinson's disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking, likely by Rab phosphorylation, that in turn may regulate different aspects of neuronal physiology. Here we show that LRRK2 interacts with Sec8, one of eight subunits of the exocyst complex. The exocyst complex is an evolutionarily conserved multisubunit protein complex mainly involved in tethering secretory vesicles to the plasma membrane and implicated in the regulation of multiple biological processes modulated by vesicle trafficking. Interestingly, Rabs and exocyst complex belong to the same protein network. Our experimental evidence indicates that LRRK2 kinase activity or the presence of the LRRK2 kinase domain regulate the assembly of exocyst subunits and that the over-expression of Sec8 significantly rescues the LRRK2 G2019S mutant pathological effect. Our findings strongly suggest an interesting molecular mechanism by which LRRK2 could modulate vesicle trafficking and may have important implications to decode the complex role that LRRK2 plays in neuronal physiology.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones Noqueados , Células PC12 , Unión Proteica , Ratas
5.
Cell Death Dis ; 11(5): 369, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409664

RESUMEN

TDP-43 pathology is a disease hallmark that characterizes both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). TDP-43 undergoes several posttranslational modifications that can change its biological activities and its aggregative propensity, which is a common hallmark of different neurodegenerative conditions. New evidence is provided by the current study pointing at TDP-43 acetylation in ALS cellular models. Using both in vitro and in vivo approaches, we demonstrate that TDP-43 interacts with histone deacetylase 1 (HDAC1) via RRM1 and RRM2 domains, that are known to contain the two major TDP-43 acetylation sites, K142 and K192. Moreover, we show that TDP-43 is a direct transcriptional activator of CHOP promoter and this activity is regulated by acetylation. Finally and most importantly, we observe both in cell culture and in Drosophila that a HDCA1 reduced level (genomic inactivation or siRNA) or treatment with pan-HDAC inhibitors exert a protective role against WT or pathological mutant TDP-43 toxicity, suggesting TDP-43 acetylation as a new potential therapeutic target. HDAC inhibition efficacy in neurodegeneration has long been debated, but future investigations are warranted in this area. Selection of more specific HDAC inhibitors is still a promising option for neuronal protection especially as HDAC1 appears as a downstream target of both TDP- 43 and FUS, another ALS-related gene.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Muerte Celular/efectos de los fármacos , Proteínas de Unión al ADN/farmacología , Histona Desacetilasa 1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Muerte Celular/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Histona Desacetilasa 1/genética , Humanos , Cuerpos de Inclusión/metabolismo , Ratones , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA