Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 588(7839): 599-603, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33361793

RESUMEN

Conversion of electrical and optical signals lies at the foundation of the global internet. Such converters are used to extend the reach of long-haul fibre-optic communication systems and within data centres for high-speed optical networking of computers. Likewise, coherent microwave-to-optical conversion of single photons would enable the exchange of quantum states between remotely connected superconducting quantum processors1. Despite the prospects of quantum networking2, maintaining the fragile quantum state in such a conversion process with superconducting qubits has not yet been achieved. Here we demonstrate the conversion of a microwave-frequency excitation of a transmon-a type of superconducting qubit-into an optical photon. We achieve this by using an intermediary nanomechanical resonator that converts the electrical excitation of the qubit into a single phonon by means of a piezoelectric interaction3 and subsequently converts the phonon to an optical photon by means of radiation pressure4. We demonstrate optical photon generation from the qubit by recording quantum Rabi oscillations of the qubit through single-photon detection of the emitted light over an optical fibre. With proposed improvements in the device and external measurement set-up, such quantum transducers might be used to realize new hybrid quantum networks2,5 and, ultimately, distributed quantum computers6,7.

2.
Nature ; 569(7758): 692-697, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31092923

RESUMEN

It has long been recognized that atomic emission of radiation is not an immutable property of an atom, but is instead dependent on the electromagnetic environment1 and, in the case of ensembles, also on the collective interactions between the atoms2-6. In an open radiative environment, the hallmark of collective interactions is enhanced spontaneous emission-super-radiance2-with non-dissipative dynamics largely obscured by rapid atomic decay7. Here we observe the dynamical exchange of excitations between a single artificial atom and an entangled collective state of an atomic array9 through the precise positioning of artificial atoms realized as superconducting qubits8 along a one-dimensional waveguide. This collective state is dark, trapping radiation and creating a cavity-like system with artificial atoms acting as resonant mirrors in the otherwise open waveguide. The emergent atom-cavity system is shown to have a large interaction-to-dissipation ratio (cooperativity exceeding 100), reaching the regime of strong coupling, in which coherent interactions dominate dissipative and decoherence effects. Achieving strong coupling with interacting qubits in an open waveguide provides a means of synthesizing multi-photon dark states with high efficiency and paves the way for exploiting correlated dissipation and decoherence-free subspaces of quantum emitter arrays at the many-body level10-13.

3.
Phys Rev Lett ; 113(26): 263602, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25615330

RESUMEN

The silicon-vacancy (SiV-) color center in diamond has attracted attention because of its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show optical initialization and readout of electronic spin in a single SiV- center with a spin relaxation time of T1=2.4±0.2 ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of T2⋆=35±3 ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherence by engineering interactions with phonons. Hyperfine structure is observed in CPT measurements with the 29Si isotope which allows access to nuclear spin. These results establish the SiV- center as a solid-state spin-photon interface.

4.
Nat Commun ; 15(1): 6920, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39134534

RESUMEN

Silicon is the ideal material for building electronic and photonic circuits at scale. Integrated photonic quantum technologies in silicon offer a promising path to scaling by leveraging advanced semiconductor manufacturing and integration capabilities. However, the lack of deterministic quantum light sources and strong photon-photon interactions in silicon poses a challenge to scalability. In this work, we demonstrate an indistinguishable photon source in silicon photonics based on an artificial atom. We show that a G center in a silicon waveguide can generate high-purity telecom-band single photons. We perform high-resolution spectroscopy and time-delayed two-photon interference to demonstrate the indistinguishability of single photons emitted from a G center in a silicon waveguide. Our results show that artificial atoms in silicon photonics can source single photons suitable for photonic quantum networks and processors.

5.
Sci Adv ; 9(40): eadh8617, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37792930

RESUMEN

Color centers in host semiconductors are prime candidates as spin-photon interfaces for quantum applications. Finding an optimal spin-photon interface in silicon would move quantum information technologies toward a mature semiconducting host. However, the space of possible charged defects is vast, making the identification of candidates from experiments alone extremely challenging. Here, we use high-throughput first-principles computational screening to identify spin-photon interfaces among more than 1000 charged defects in silicon. The use of a single-shot hybrid functional approach is critical in enabling the screening of many quantum defects with a reasonable accuracy. We identify three promising spin-photon interfaces as potential bright emitters in the telecom band: [Formula: see text], [Formula: see text], and [Formula: see text]. These candidates are excited through defect-bound excitons, stressing the importance of such defects in silicon for telecom band operations. Our work paves the way to further large-scale computational screening for quantum defects in semiconductors.

6.
Science ; 370(6518): 840-843, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33184212

RESUMEN

The energy damping time in a mechanical resonator is critical to many precision metrology applications, such as timekeeping and force measurements. We present measurements of the phonon lifetime of a microwave-frequency, nanoscale silicon acoustic cavity incorporating a phononic bandgap acoustic shield. Using pulsed laser light to excite a colocalized optical mode of the cavity, we measured the internal acoustic modes with single-phonon sensitivity down to millikelvin temperatures, yielding a phonon lifetime of up to [Formula: see text] seconds (quality factor [Formula: see text]) and a coherence time of [Formula: see text] microseconds for bandgap-shielded cavities. These acoustically engineered nanoscale structures provide a window into the material origins of quantum noise and have potential applications ranging from tests of various collapse models of quantum mechanics to miniature quantum memory elements in hybrid superconducting quantum circuits.

7.
Nat Commun ; 9(1): 3706, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209270

RESUMEN

Embedding tunable quantum emitters in a photonic bandgap structure enables control of dissipative and dispersive interactions between emitters and their photonic bath. Operation in the transmission band, outside the gap, allows for studying waveguide quantum electrodynamics in the slow-light regime. Alternatively, tuning the emitter into the bandgap results in finite-range emitter-emitter interactions via bound photonic states. Here, we couple a transmon qubit to a superconducting metamaterial with a deep sub-wavelength lattice constant (λ/60). The metamaterial is formed by periodically loading a transmission line with compact, low-loss, low-disorder lumped-element microwave resonators. Tuning the qubit frequency in the vicinity of a band-edge with a group index of ng = 450, we observe an anomalous Lamb shift of -28 MHz accompanied by a 24-fold enhancement in the qubit lifetime. In addition, we demonstrate selective enhancement and inhibition of spontaneous emission of different transmon transitions, which provide simultaneous access to short-lived radiatively damped and long-lived metastable qubit states.

8.
Nat Commun ; 9(1): 2012, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789553

RESUMEN

The uncontrolled interaction of a quantum system with its environment is detrimental for quantum coherence. For quantum bits in the solid state, decoherence from thermal vibrations of the surrounding lattice can typically only be suppressed by lowering the temperature of operation. Here, we use a nano-electro-mechanical system to mitigate the effect of thermal phonons on a spin qubit - the silicon-vacancy colour centre in diamond - without changing the system temperature. By controlling the strain environment of the colour centre, we tune its electronic levels to probe, control, and eventually suppress the interaction of its spin with the thermal bath. Strain control provides both large tunability of the optical transitions and significantly improved spin coherence. Finally, our findings indicate the possibility to achieve strong coupling between the silicon-vacancy spin and single phonons, which can lead to the realisation of phonon-mediated quantum gates and nonlinear quantum phononics.

9.
Nat Commun ; 8: 15376, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28548097

RESUMEN

The controlled creation of defect centre-nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA